
[Optimizing Privacy Budget Management in Differentially Private Systems]

[Kelly Kostopoulou]

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2025



© 2025

[Kelly Kostopoulou]

All Rights Reserved



Abstract

[Optimizing Privacy Budget Management in Differentially Private Systems]

[Kelly Kostopoulou]

Modern computing systems increasingly operate under stringent resource constraints—whether in

the form of traditional hardware resources like CPU and memory, or novel, non-traditional

resources such as user privacy. This thesis explores systems and algorithmic techniques for

efficient resource management in two distinct domains: (1) the emerging field of

privacy-preserving data analytics, where privacy itself becomes a scarce and quantifiable resource

to be allocated; and (2) distributed transaction processing, where lock-based contention and

commit coordination determine throughput under high load.

In the first part of the thesis, we present a series of systems—DPack, Turbo, and Cookie

Monster—that treat differential privacy budgets as consumable system resources. Each system

targets a different layer of the privacy-preserving computing stack, from workload schedulers to

database query caches to browser-based advertising measurement. Despite the diversity of

applications, they all aim to improve the efficiency with which private data can be used,

supporting more useful computation under fixed privacy guarantees.

The second part of the thesis shifts domains to distributed databases and introduces Sangria, an

adaptive protocol that dynamically switches between conservative and pipelined commit

strategies based on runtime conditions. Although this work is unrelated to privacy, it shares a

common methodological theme: maximizing efficiency under contention and resource pressure.



Together, these contributions illustrate the importance—and the diversity—of efficient resource

allocation across modern computing systems, from privacy-aware data processing to classical

transaction management.



Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2: DPack: Efficiency-Oriented Privacy Budget Scheduling . . . . . . . . . . . . . 3

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 DP Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Privacy Scheduling Background . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Efficiency-Oriented Privacy Scheduling . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Efficient Scheduling with Traditional DP . . . . . . . . . . . . . . . . . . . 12

2.4.2 Efficient Scheduling Under RDP Accounting . . . . . . . . . . . . . . . . 15

2.4.3 DPack Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.4 Adapting to the Online Case . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



2.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.2 Offline Microbenchmark (Q1, Q2) . . . . . . . . . . . . . . . . . . . . . . 26

2.7.3 Online Plausible Workload (Q3) . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.4 Kubernetes Implementation Evaluation (Q4) . . . . . . . . . . . . . . . . . 32

2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 3: Turbo: Effective Caching for Differentially-Private Databases . . . . . . . . . . 36

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Turbo Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 Turbo Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Detailed Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.3 PMW-Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.4 Tree-Structured PMW-Bypass . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.5 Histogram Warm-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Prototype Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ii



3.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7.2 Use Case (1): Non-partitioned Database . . . . . . . . . . . . . . . . . . . 69

3.7.3 Use Case (2): Partitioned Static Database . . . . . . . . . . . . . . . . . . 72

3.7.4 Use Case (3): Partitioned Streaming Database . . . . . . . . . . . . . . . . 73

3.7.5 Runtime and Memory Evaluation . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 4: Cookie Monster: Efficient On-device Budgeting for Differentially-Private Ad-
Measurement Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Review of Ad-Measurement APIs . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Example Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.2 Ad-Measurement Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3 Improvement Opportunity . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Cookie Monster Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.2 Execution Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.4 Bias Implications of IDP . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Formal Modeling and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.1 Formal System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

iii



4.5.2 IDP Formulation and Guarantees . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.3 IDP Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Chrome Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7.2 Microbenchmark Evaluation (Q1) . . . . . . . . . . . . . . . . . . . . . . 107

4.7.3 PATCG Evaluation (Q1, Q2) . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7.4 Criteo Evaluation (Q1, Q2) . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7.5 Bias Measurement (Q3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 5: Dances with Locks: An Adaptive Commit Protocol for Distributed Transactions 116

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Dependency Tracking with Resolver . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Sangria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5.2 Coordinator Commit Protocol . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5.3 Participant Prepare Procedure . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.5 Adaptive Decision Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

iv



5.5.6 Correctness Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6.2 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6.3 Contention vs. Resolver Capacity (Q1) . . . . . . . . . . . . . . . . . . . . 134

5.6.4 Online Adaptation (Q2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.6.5 Mixed Workloads (Q3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6.6 Resolver Performance (Q4) . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.8 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

v



List of Figures

2.1 Example of allocations with basic DP accounting. Task 𝑇1 requests privacy budget from
3 blocks, 𝐵1, 𝐵2, 𝐵3. Tasks 𝑇2, 𝑇3, 𝑇4 request slightly more privacy budget, but each one
from one distinct block: 𝐵1, 𝐵2, 𝐵3, respectively. In (a), DPF sorts these tasks based on
their dominant shares: 𝑇1 first (because its dominant share is lower, even though it demands
budget from all the blocks), then 𝑇2, 𝑇3, 𝑇4 in arbitrary order. After 𝑇1 is scheduled, there
is no more budget for other tasks. Meanwhile, in (b) an efficient scheduler can allocate 3
tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Example RDP curves and DP translation. (a) RDP curves for Gaussian, subsampled
Gaussian, and Laplace mechanisms, each with std-dev 𝜎 = 2, plus their composition. (b)
Translation to (𝜖𝐷𝑃 , 10−6)-DP. The “best” (i.e., tightest) alpha differs among mechanisms.
For composition, best is 𝛼 = 6, giving 𝜖𝐷𝑃 = 5.5. . . . . . . . . . . . . . . . . . . . . 16

2.3 Example of allocations with RDP accounting. . . . . . . . . . . . . . . . . . . . . 18

2.4 (Q1) DPack under workloads with variable heterogeneity using our microbenchmark.
Global efficiency of the algorithms (y axes) in the offline setting, as heterogeneity increases
on the x axes: (a) variation in number of blocks requested, (b) variation in best alphas for
the tasks’ RDP curves. Q1 Answer: DPack tracks Optimal closely and significantly out-
performs DPF on workloads with high heterogeneity: 0–161% improvement for Fig. 2.4a
and 0–67% for Fig. 2.4b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 (Q2) Scalability under increasing load from the microbenchmark. (a) Scheduler run-
time and (b) number of allocated tasks, as a function of offered load (x axes). Q2 Answer:
Optimal becomes intractable quickly while DPack and DPF remain practical even at high
load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 (Q3) Efficiency evaluation on the online Alibaba-DP workload. Number of allocated
tasks as a function of (a) offered load for 90 blocks and (b) available blocks for 60k tasks.
Q3 Answer: Alibaba-DP exhibits sufficient heterogeneity for DPack to present a significant
improvement (1.3–1.7×) over DPF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vi



2.7 Evaluation on Amazon Reviews workload from [8]. (a) The original synthetic workload
exhibits limited heterogeneity, so there is no room for DPack to improve over DPF. (b)
Adding randomly selected weights to the tasks creates sufficient heterogeneity for DPack
to show an improvement. Global efficiency is measured as the sum of weights of allocated
tasks (y axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 (Q4) Evaluation on Kubernetes with Alibaba-DP. DPack has only a modestly higher
runtime than DPF, as system-related overheads dominate. In the online setting, scheduling
delays are nearly identical across schedulers. . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Turbo architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Running example. (a) Simplified Covid tests dataset with 𝑛 = 100 rows and data
domain size 𝑁 = 8 for the two non-time attributes, test outcome 𝑃 and subject’s
age bracket 𝐴. (b) Two queries that were previously run. (c) State of the histogram
as queries are executed. (d) Next query to run. . . . . . . . . . . . . . . . . . . . . 49

3.3 Demo experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 PMW-Bypass. New components over vanilla PMW are in blue/bold. . . . . . . . . 53

3.5 Example of tree-structured histograms. . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Tree-structured PMW-Bypass. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 (a) Turbo integration into Tumult. (b) Turbo API. . . . . . . . . . . . . . . . . 60

3.8 Non-partitioned database: (a-c) system-wide evaluation (Question 1); (d) em-
pirical convergence for PMW-Bypass vs. PMW (Question 2). (a-c) Turbo, in-
stantiated with one PMW-Bypass and Exact-Cache, significantly improves budget
consumption compared to both baselines. (d) Uses Covid 𝑘zipf = 1. PMW-Bypass
has similar empirical convergence to PMW, and both converge faster with much
larger lr than anticipated by worst-case convergence. . . . . . . . . . . . . . . . . 67

3.9 Impact of parameters (Question 3). Uses Covid 𝑘zipf = 1. Being too optimistic
or pessimistic about the histogram’s state (a), or too aggressive or timid in learning
from each update (b), gives poor performance. . . . . . . . . . . . . . . . . . . . 69

3.10 Partitioned static database: system-wide evaluation (Question 5). Turbo is in-
stantiated with tree-structured PMW-Bypass and Exact-Cache. Turbo significantly
improves budget consumption compared to both a single Exact-Cache and a tree-
structured set of Exact-Caches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



3.11 (a-c) Partitioned streaming database: system-wide consumed budget (Ques-
tion 7); (d) PMW-Bypass runtime in non-partitioned setting (Question 8). (a-
c) Turbo is instantiated with tree-structured PMW-Bypass and Exact-Cache, with
and without warm-start. (d) Uses Covid, 𝑘zipf = 1, and one Exact-Cache and PMW-
Bypass. Shows execution runtime for different execution paths. Most expensive is
when the SV test fails. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Privacy loss dashboard. Screenshot from our Chrome implementation of Cookie
Monster (minimally edited for visibility). . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Architectures of ad-measurement systems. Common structure, with a key differ-
ence in where attribution and DP budgeting occur: off-device (IPA) vs. on-device
(ARA, PAM, Hybrid). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Cookie Monster architecture and example execution (red overlay). §4.4.1 de-
scribes the architecture and §4.4.2 the example execution. Notation: @𝑒1 : 𝐼1
indicates that Ann’s device receives an impression 𝐼1 of a Nike shoe ad from ny-
times.com in epoch 𝑒1. Red dotted arrows show the attribution function’s search
for impressions over epochs 𝑒1 − 𝑒4. . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Budget consumption on the microbenchmark. (a) and (b) show average and
maximum budget consumption across all device-epochs, respectively, as a func-
tion of the fraction of users that participate per query (knob1); value of knob2 is
constant 0.1. (c) and (d) show the same metrics as a function of user impressions
per day (knob2); value of knob1 is constant 0.1. . . . . . . . . . . . . . . . . . . . 108

4.5 Budget consumption and query accuracy on the PATCG dataset. (a) Aver-
age budget consumption across all device-epochs as a function of the number of
queries submitted by the advertiser. (b) CDF of RMSRE with a 7-day epoch. (c)
RMSRE median (horizontal lines), first and third quartiles (boxes), and max/min
(top/bottom range markers) as epoch length increases. . . . . . . . . . . . . . . . . 109

4.6 Budget consumption and query accuracy on Criteo. (a) CDF of per-device
average budget consumption across epochs for all devices and advertisers. (b) CDF
of RMSREs for a 7-day epoch. (c) RMSRE metrics with varying epoch length (see
Fig. 4.5c for format). (d) The same CDF as in (a), but for Criteo++, showing the
impact of synthetic impression augmentation on Cookie Monster’s performance. . 111

4.7 Budget consumption and query accuracy with bias measurement on the mi-
crobenchmark. (a) Average budget consumed across all device-epochs. (b) CDF
of true RMSRE for executed queries, alongside Cookie Monster’s RMSRE esti-
mation from bias measurement (light-purple line). (c) Quartiles of true RMSRE,
where queries with error estimate above a given cutoff are rejected by Cookie Mon-
ster with bias measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

viii



5.1 Heatmap illustrating the regimes where each protocol is most effective as a function
of workload contention (vertical axis) and Resolver capacity (horizontal axis). Red
regions indicate scenarios where pipelining (Pipelined-2PC) outperforms Strict-
2PC, while blue regions indicate the opposite. The color intensity reflects the mag-
nitude of the performance advantage. . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Strict 2PC vs Pipelined 2PC. (a) In Strict 2PC, locks are held throughout the entire
commit protocol, resulting in long lock hold times and increased contention. (b) In
Pipelined 2PC, locks are released earlier — immediately after the prepare record
is appended to the WAL buffer — allowing subsequent transactions to proceed
sooner and reducing contention, but introducing commit-time dependencies that
require additional coordination to ensure correctness. . . . . . . . . . . . . . . . . 122

5.3 Resolver architecture showing communication between resolver, coordinator, and
participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 (Q1) Throughput of the three protocols as a function of workload contention (x-
axis: concurrency level) under three different Resolver capacity settings (a) high
capacity (no background load), (b) medium capacity (moderate background load),
and (c) low capacity (heavy background load). Sangria is able to adapt its behavior
based on the Resolver’s capacity and workload contention, matching or exceeding
the throughput of the baselines in all regimes. . . . . . . . . . . . . . . . . . . . . 134

5.5 (Q1) YCSB: Throughput comparison as contention increases (by increasing the
Zipf Constant) under varying Resolver capacities. . . . . . . . . . . . . . . . . . . 137

5.6 (Q2) Throughput of each protocol as workload contention alternates between low
and high phases at runtime, under three different resolver capacities (high, medium,
low). Sangria adapts to changing contention, matching or exceeding the best static
baseline in each regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.7 (Q2) Throughput of each protocol as resolver capacity alternates between high
and low phases at runtime, under three different concurrency levels (5, 50, 500).
Sangria adapts to changing resolver capacity, matching or exceeding the best static
baseline in each regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.8 (Q3) Throughput of each protocol under a mixed workload with both high-contention
(hot) and low-contention (cold) key regions, across three resolver capacities (high,
medium, low). Sangria dynamically applies pipelining for hot keys and strict com-
mit for cold keys, matching or exceeding the best baseline in each region. . . . . . 141

ix



5.9 (Q4) Cumulative distribution function (CDF) of batch sizes for commit groups
formed by the Resolver. (a) Varying Resolver capacity under high contention (con-
currency = 500) shows that lower capacity leads to larger batch sizes due to more
transactions accumulating before being unblocked. (b) Varying workload con-
tention under maximum Resolver capacity demonstrates that higher concurrency
increases batching opportunities, while low contention results in mostly single-
transaction commits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

x



List of Tables

2.1 Workload and methodology of each evaluation question. . . . . . . . . . . . . . . . 24

2.2 Efficiency on Kubernetes prototype with Alibaba-DP. . . . . . . . . . . . . . . . . . 32

xi



Acknowledgments

xii



Acknowledgements

I gratefully acknowledge the support of the Onassis Foundation, from which I have been a

recipient of a scholarship during my doctoral studies. The part of this dissertation related to

differential privacy was conducted in close collaboration with my co-first author, Pierre Tholoniat.

xiii



Chapter 1: Introduction

Efficiency is a fundamental goal in systems design. As computing environments evolve, the

need to make effective use of limited resources remains constant. Traditionally, these resources

have included compute, memory, storage, and bandwidth. More recently, new forms of constraints

have emerged, such as user privacy, which must be carefully managed in systems that handle

sensitive data.

This thesis investigates efficient resource management across two distinct domains:

(a) Differentially-private computing, where privacy loss is modeled as a bounded budget that must

be allocated carefully; and (b) Distributed transaction processing, where system throughput de-

pends on how effectively a system handles contention and commit coordination under concurrent

access.

The bulk of the thesis focuses on the privacy domain. As organizations seek to extract insights

from sensitive datasets, differential privacy (DP) has become the gold standard for protecting in-

dividuals against leakage. However, DP comes with a hard constraint: once a dataset’s privacy

budget is exhausted, no further queries can be answered safely. We develop three systems that

address this constraint from different angles:

DPack proposes an efficiency-oriented scheduler that maximizes the number of machine learn-

ing models trained under a fixed privacy budget, formulating the problem as a multidimensional

knapsack variant.

Turbo introduces a caching mechanism for DP databases that leverages previous query results—

via both traditional caching and private multiplicative weights—to answer new queries with little

or no additional privacy cost.

Cookie Monster designs a rigorous on-device budgeting scheme for DP-based ad measurement

systems, improving both privacy guarantees and utility in modern browsers.

1



Although varied in implementation, these systems all treat privacy as a scarce system resource,

and focus on using it as efficiently as possible.

In contrast, the final chapter of the thesis shifts focus to a very different problem: optimizing

distributed commit protocols in transactional systems. While not thematically tied to privacy, this

work shares a conceptual alignment with the rest of the thesis. Here, contention for locks and coor-

dination bottlenecks limit system performance. We present Sangria, a distributed commit protocol

that dynamically toggles between conservative and pipelined execution strategies based on local

contention and resource availability, thereby improving transaction throughput across workload

regimes.

Together, the contributions in this thesis underscore a broader theme: how to allocate limited

resources—whether privacy budgets or coordination capacity—efficiently and accurately. The sys-

tems and algorithms presented here offer new insights into managing modern computing resources.

2



Chapter 2: DPack: Efficiency-Oriented Privacy Budget Scheduling

2.1 Overview

Machine learning (ML) models can leak information about users, and differential privacy (DP)

provides a rigorous way to bound that leakage under a given budget. This DP budget can be

regarded as a new type of computing resource in workloads of multiple ML models training on

user data. Once it is used, the DP budget is forever consumed. Therefore, it is crucial to allocate

it most efficiently to train as many models as possible. This paper presents a scheduler for the

privacy resources that optimizes for efficiency. We formulate privacy scheduling as a new type

of multidimensional knapsack problem, called privacy knapsack, which maximizes DP budget

efficiency. We show that privacy knapsack is NP-hard, hence practical algorithms are necessarily

approximate. We develop an approximation algorithm for privacy knapsack, DPack, and evaluate it

on microbenchmarks and on a new, synthetic private-ML workload we developed from the Alibaba

ML cluster trace. We show that DPack: (1) often approaches the efficiency-optimal schedule, (2)

consistently schedules more tasks compared to a state-of-the-art privacy scheduling algorithm that

focused on fairness instead of efficiency (1.3–1.7× in Alibaba, 1.0–2.6× in microbenchmarks), but

(3) sacrifices some level of fairness for efficiency. Using DPack, DP ML operators should be able

to train more models on the same amount of user data while offering the same privacy guarantee

to their users.

2.2 Introduction

Machine learning (ML) models are consuming an essential resource – user privacy – but they

are typically not accounting for or bounding this consumption. A large company may train thou-

sands of models over user data per week, continuously updating its models as it collects new data.

3



Some of the models may be released to mobile devices or distributed globally to speed up infer-

ence. Unfortunately, there is increasing evidence that ML models can reveal specific entries from

their original training sets [1, 2, 3, 4, 5], both through parameters and predictions, thereby poten-

tially leaking user data to adversaries. Intuitively, the more one learns from aggregate user data,

the more one should expect to also learn (and hence leak) about individual users whose data is

used. This intuition has been proven formally for simple statistics [6] and repeatedly demonstrated

experimentally for ML models [2, 3, 5]. Therefore, user privacy can be viewed as a resource that

is consumed by tasks in an ML workload, and whose consumption should be accounted for and

bounded to limit data leakage risk.

Differential privacy (DP) [7] provides a rigorous way to define the privacy resource, and to

account for it across multiple computations or tasks, be they ML model training tasks or statistic

calculations. DP randomizes a computation over a dataset (e.g. training an ML model or computing

a statistic) to bound the leakage of entries in the dataset through the output of the computation [8].

Each DP computation increases this bound on data leakage, consuming some of the data’s privacy

budget, a pre-set quantity that should never be exceeded to maintain the privacy guarantee. In

workloads with a large number of tasks that continuously train models on a private corpus or

stream, the data’s privacy budget is a very scarce resource that must be efficiently allocated to

enable the execution of as many tasks as possible.

In our prior work [8, 9], we began exploring how to expose data privacy as a new computing

resource that is inherently being consumed by the tasks in an ML cluster and which must therefore

be allocated and managed by the cluster’s resource manager similarly to how other, more tradi-

tional computing resources – CPU, GPU, and RAM – are managed. Other researchers proposed

Cohere [10] an alternative approach for treating privacy as a computing resource. A common

conclusion of these prior works is that because the privacy resource behaves differently from tra-

ditional computing resources (e.g. it is finite), scheduling it requires new algorithms. To this end,

we proposed DPF [8], the first scheduling algorithm for the privacy resource, which adapted the

well-known dominant resource fairness (DRF) algorithm to the privacy resource. Our focus was on

4



fairness as the key objective for our algorithm design. DPF guarantees a form of max-min fairness

for the privacy budget when multiple tasks compete for it.

Unfortunately, as is often the case in scheduling [11, 12, 13, 14, 15, 16], fairness can come at

the cost of allocation efficiency, measured as the total number of tasks that are allocated over a unit

of time. For privacy, we find that this inefficiency is especially evident in workloads that exhibit a

high degree of heterogeneity either in the data segments they request (e.g., a workload containing

tasks that run on data collected from different time ranges), or in the types of tasks they contain

(e.g. a workload mixing different types of statistics and ML algorithms). In such cases, we show

that a scheduler that optimizes for efficiency rather than fairness can schedule up to 2.6× more

tasks than DPF for the same privacy budget.

In this paper, we explore the first practical efficiency-oriented privacy schedulers, which aim to

maximize the number of scheduled tasks, or the total utility of scheduled tasks if tasks are assigned

utility weights (§2.4). We first introduce a new formulation of the DP scheduling problem, which

optimizes for efficiency, and show that it maps to the NP-hard multidimensional knapsack problem,

requiring practical approximations to solve in practice. We demonstrate that (1) our prior DPF

algorithm, which optimizes for fairness, can be seen as an inefficient heuristic to solve this problem,

and that (2) a better heuristic for multidimensional knapsack yields more efficient DP scheduling.

We then show that instantiating the privacy scheduling problem to Rényi DP (RDP) accounting,

a state-of-the-art, efficient DP accounting mechanism, introduces a new dimension with unusual

semantics to the scheduling problem. To support this new dimension, we define a new knapsack

problem that we call the privacy knapsack, which we show is also NP-hard. Finally, we propose a

new RDP-aware heuristic for the privacy knapsack, instantiate it into a new scheduling algorithm

called DPack, provide a formal analysis of its approximation properties, and discuss when one

should expect to see significant efficiency gains from it (§2.5).

We implement DPack in a Kubernetes-based orchestrator for data privacy [8] and an easily-

configurable simulator (§3.6). Using both microbenchmarks and a new, synthetic, DP-ML work-

load we developed from the Alibaba’s ML cluster trace [17], we compare DPack to DPF, the

5



optimal privacy knapsack solver, and first-come-first-serve (FCFS) (§5.6). DPack schedules signif-

icantly more tasks than DPF (1.3–1.7× in Alibaba and 1.0–2.6× in microbenchmarks), and closely

tracks the optimal solution, at least up to a small number of blocks and tasks where it is feasible for

us to obtain the optimal solution. DPack on Kubernetes can scale to thousands of tasks, and incurs

a relatively modest scheduler runtime overhead. Still, by focusing on efficiency, DPack sacrifices

some level of fairness compared to DPF: in the Alibaba workload, DPF is able to schedule 90%

of tasks that request less or equal than their privacy budget “fair-share”, while DPack schedules

only 60% of such tasks. This is inevitable given the rather fundamental tradeoff between efficiency

and fairness in scheduling. Our work thus fills in an important gap on algorithms that prioritize

efficiency over fairness, as we believe will be desirable given the scarcity of this essential new

resource in ML systems, user privacy.

This paper is organized as follows. §5.3 provides background on the threat model we are

addressing, DP, and prior work on DP scheduling. Much of this section builds upon our prior

papers in this space [8, 9], so there is considerable redundancy in the statements with those papers’,

which we include for the purposes of making this paper self-contained. §2.4 begins our main

contributions in this work, consisting of the definitions and hardness properties of the efficiency-

oriented DP scheduling problem, its adaptation for RDP, and the DPack algorithm we propose

for both efficient and practical DP resource scheduling. §2.5 describes the applicability of our

approach, highlighting cases when DPack is likely to give substantial efficiency benefit compared

to DPF, as well as cases when it will not do so. §3.6 presents our implementation of DPack, while

§5.6 provides our evaluation. Finally, §4.8 reviews related works and §4.9 concludes. We make our

prototype and experimental code available at https://github.com/columbia/dpack.

2.3 Background

2.3.1 Threat Model

We adopt the same threat model as in our prior work [8]. We are concerned with the sensitive

data exposure that may occur when pushing models trained over user data to untrusted locations,

6

https://github.com/columbia/dpack


such as end-user devices or inference servers all around the world. We operate under a centralized-

DP model: a trusted curator collects and stores all user data and executes tasks, which consist of

ML training procedures or pipelines that are explicitly programmed to satisfy a particular (𝜖, 𝛿)-

DP guarantee. We trust that the curator and the programmers of the tasks are not malicious and

will not want to inspect, steal, or sniff the data. However, we do not trust the recipients of results

released by the system, or the locations in which they are stored. Those results may be statistical

aggregates, ML model predictions, or entire ML models. Accessing them may allow malicious

activities that compromise sensitive personal information. We impose DP guarantees across all the

processes that generate them. Membership inference attacks [18, 19, 20, 3] allow the adversary to

infer whether an individual is in the data used to generate the output. Data reconstruction attacks

[2, 6, 1] allow the adversary to infer sensitive attributes about individuals that exist in this data. We

tackle both types of attack.

Our focus is not on single models or statistics, released once, but rather on workloads of many

models or statistics, trained or updated periodically over windows of data from user streams. For

example, a company may train an auto-complete model daily or weekly to incorporate new data

from an email stream, distributing the updated models to mobile devices for fast prediction. More-

over, the company may use the same email stream to periodically train and disseminate multiple

types of models, for example for recommendations, spam detection, and ad targeting. This creates

ample opportunities for an adversary to collect models and perform privacy attacks to siphon per-

sonal data. To prevent such attacks, our goal is to maintain a global (𝜖𝐺 , 𝛿𝐺)-DP guarantee over

the entire workload consisting of many tasks.

2.3.2 DP Background

We present background on DP theory that is necessary to understand our scheduling algorithm.

DP addresses both membership inference and data reconstruction attacks [3, 1, 2, 21]. Intuitively,

both attacks work by finding data points (which can range from individual events to entire users)

that make the observed model more likely: if those points were in the training set, the likelihood

7



of the observed model increases. DP prevents these attacks by ensuring that no specific data point

can drastically increase the likelihood of the model produced by the training procedure.

DP randomizes a computation over a dataset (such as the training of ML model) to bound a

quantity called privacy loss, defined as some measure of the change in the distribution over the

outputs of the randomized computation incurred when a single data point is added to or removed

from the input dataset. Privacy loss is a formalization of what one might colloquially call “leakage”

through a model. Satisfying DP means bounding privacy loss by some fixed, parameterized value,

𝜖 > 0, which is called privacy budget. This bound is enforced through the virtue of the randomness

(often called noise) added into the computation. There are multiple ways to define privacy loss,

corresponding to various ways to define the distance between two output distributions. These

different privacy loss definitions lead to different DP definitions, each with different interpretations,

strengths and weaknesses. We review two DP definitions here.

Traditional differential privacy (𝜖-DP and (𝜖, 𝛿)-DP). The original definition proposed by Dwork,

et al. [7] defines privacy loss as follows. Given a randomized algorithm, A : D → Y, for any

datasets D,D′ that differ in one entry (called neighboring datasets) and for any output 𝑦 ∈ Y:

PrivacyLoss(𝑦,D,D′) = log
( 𝑃(A(D) = 𝑦)
𝑃(A(D′) = 𝑦)

)
. (2.1)

The traditional, pure 𝜖-DP definition requires an algorithm to satisfy |PrivacyLoss(𝑦,D,D′) | ≤ 𝜖

for any 𝑦, D, D′ as above. A variation of this definition, popularly used in ML, is (𝜖, 𝛿)-DP: for

𝛿 ∈ [0, 1), it requires an algorithm to satisfy =𝑃(A(D) ∈ S) ≤ exp(𝜖)𝑃(A(D′) ∈ S) + 𝛿 for all

S ⊆ Range(A), for each neighboring D,D′.

These traditional DP definitions have the strength of being relatively interpretable: for a small

value of 𝜖 (e.g., 𝜖 ≤ 1), 𝜖-DP can be interpreted as a guarantee that an attacker who inspects the

output of an 𝜖-DP computation will not learn anything new with confidence about any entry in the

training set that they would not otherwise learn if the entry were not in the training set [22]. Simi-

larly, for small 𝛿 (e.g., 𝛿 < 1
𝑛2 for dataset size 𝑛), (𝜖, 𝛿)-DP guarantee is roughly a high-probability

𝜖-DP guarantee. The advantage of (𝜖, 𝛿)-DP is support for a richer set of randomization mecha-

8



nisms, such as adding noise from a Gaussian distribution, which pure DP cannot, and which often

provide better privacy-utility tradeoffs. That is why (𝜖, 𝛿)-DP is the reference privacy definition

for DP ML.

Rényi DP Accounting ((𝛼, 𝜖)-RDP). More recent DP definitions define privacy loss differently,

usually sacrificing interpretability for tighter analysis of randomization mechanisms and how they

compose with each other, yielding even better privacy-utility tradeoffs, especially in DP ML. A

state-of-the-art definition is RDP [23], which has been adopted internally by most DP ML plat-

forms [24, 25, 26]. Instead of defining the privacy loss based on probability ratios as traditional

DP does, RDP defines it in terms of the Rényi divergence, a particular distance between the dis-

tributions over all possible outcomes for A(D) and A(D′). Rényi divergence has a parameter,

𝛼 > 1, called order:

PrivacyLoss𝛼 (D,D′) =
1

𝛼 − 1
log E

𝑦∼A(D)

( 𝑃(A(D) = 𝑦)
𝑃(A(D′) = 𝑦)

)𝛼
.

As before, (𝛼, 𝜖)-RDP requires that |PrivacyLoss𝛼 (D,D′) | ≤ 𝜖 for any datasets D,D′ differing

in one entry.

RDP is less interpretable than traditional DP due to the complexity of Rényi divergence. How-

ever, one can always translate from (𝜖, 𝛼)-RDP to (𝜖𝐷𝑃, 𝛿)-DP [23] for any appropriately ranged

values of 𝛼, 𝜖 , and 𝛿:

𝜖𝐷𝑃 = 𝜖 + log(1/𝛿)
𝛼 − 1

. (2.2)

RDP’s greatest advantage over traditional DP – and the reason for its recent adoption by most

major DP ML platforms as well as for our special consideration of it in this paper – is its support

for both efficient and convenient composition. All successful DP definitions are closed under com-

position; i.e., running multiple DP computations satisfies the DP definition, albeit with a worse 𝜖

parameter. However, whereas with traditional DP, composing 𝑚 mechanisms degrades the global

guarantee linearly with 𝑚, with RDP, the global guarantee degrades with
√
𝑚 when applying com-

position followed by conversion to traditional DP through Eq. 2.2. RDP’s tighter analysis can allow

9



composition of more DP computations with the same 𝜖 guarantees; the advantage is particularly

significant with a large 𝑚.

Since popular DP ML algorithms, such as DP SGD, consist of tens of thousands iterations of

the same rudimentary DP computation (computing one gradient step over a sample batch), they

require the most efficient composition accounting method. This is why most DP ML platforms

internally operate on RDP to compose across training steps and then translate the cumulative RDP

guarantee into traditional DP (with Eq. 2.2) to provide an interpretable privacy semantic externally.

Similarly, since our goal is to develop efficient scheduling algorithms – that pack as many DP ML

tasks as possible onto a fixed privacy budget – it is incumbent on us to consider RDP accounting

in our scheduling formulations.1 We do so in a similar way: internally, some of the algorithms

we propose use RDP accounting (albeit to compose across ML training tasks, not across gradient

steps within a task) but externally we will always expose a traditional DP guarantee. As it turns

out, operating on RDP internally creates interesting challenges for scheduling, about which we

discuss in §2.4.2.

2.3.3 Privacy Scheduling Background

In a recent line of work [9, 8], we have argued for the global privacy budget to be managed as a

new type of computing resource in workloads operating on user data: its use should be tracked and

carefully allocated to competing tasks. We adopt the same focus on ML platforms for continuous

training on user data streams, such as Tensorflow-Extended (TFX), and build on the same basic

operational model [9] and key abstractions and algorithms [8] for monitoring and allocating privacy

in DP versions of these platforms. The operational model is as follows. Similar to TFX, the user

data stream is split into multiple non-overlapping blocks (called spans in TFX [28]), for example

by time, with new blocks being added over time. Blocks can also correspond to partitions given

by SQL GROUP BY statements over public keys, such as in Google’s DP SQL system [29] or in

the DP library used for the U.S. Census [30]. There are multiple tasks, dynamically arriving over

1We considered, and discarded, advanced composition for traditional DP, which is also efficient but involves com-
plex arithmetic that is untenable to incorporate in a scheduler [27].

10



time, that request to compute (e.g., train ML models) on subsets of the blocks, such as the most

recent 𝑁 blocks. The company owning the data wants to enforce a global traditional DP guarantee,

(𝜖𝐺 , 𝛿𝐺)-DP, that cannot be exceeded across these tasks. Each data block is associated with a

global privacy budget (fixed a priori), which is consumed as DP tasks compute on that block until

it is depleted.

In Luo et al. [8], we incorporated privacy blocks, i.e., data blocks with privacy budget, as

a new compute resource into Kubernetes, to allocate privacy budget from these blocks to tasks

that request them. The resulting system, which is a drop-in extension of Kubernetes, is called

PrivateKube. To request privacy budget from a privacy block, a task 𝑖 sets a demand vector (𝑑𝑖) of

length 𝑚, equal to the number of blocks in the system. The demand vector specifies the privacy

budget that task 𝑖 requests for each individual block in the system (with a zero demand for blocks

that it is not requesting). If task 𝑖 is allocated, then its demand vector is consumed from the blocks’

privacy budgets. When a block’s privacy budget reaches zero, no more tasks can be allocated for

that block and the block is removed. This ensures that a block of user data will not be used to

extract so much information that it risks leaking information about the users. In this sense, each

privacy block is a non-replenishable or finite resource. It is therefore important to carefully allocate

budget from privacy blocks across tasks, so as to pack as many tasks as possible onto the blocks

available at any time. That’s the goal of efficiency-oriented privacy scheduling and it is in contrast

(and as we shall see, at odds) with fairness-oriented scheduling, which we previously explored

in PrivateKube with an algorithm called DPF (Dominating Privacy-block Fairness). We defer a

description of DPF and the tradeoffs between fairness and efficiency in privacy scheduling until

after we have formulated the efficiency-oriented privacy scheduling problem in what follows.

2.4 Efficiency-Oriented Privacy Scheduling

A key contribution of this work is the formalization of the efficiency-oriented DP scheduling

problem. We first develop an offline version of this problem, in which the entire workload is as-

sumed to be fixed and known a priori, and study efficient DP scheduling under traditional DP and

11



basic composition (§2.4.1). We show that offline DP scheduling maps to the NP-hard multidi-

mensional knapsack problem, requiring practical approximations to solve in practice. Describing

how our previous DPF algorithm works, we show that it can be seen as an inefficient heuristic for

the efficiency-oriented scheduling problem, albeit one that has fairness guarantees. We then show

that a better heuristic yields more efficient DP scheduling with multiple data blocks. In §2.4.2 we

move onto a more complex RDP formulation of the efficiency-oriented allocation problem, but one

that has the potential to boost efficiency significantly compared to traditional DP thanks to RDP’s

composition benefits. We prove the new RDP formulation as also NP-hard and develop a second,

RDP-aware heuristic that leverages some unusual characteristics of this problem. In §2.4.3, we

describe DPack, our proposed efficiency-oriented scheduling algorithm that incorporates both of

our heuristics and in special settings can be shown to be a proper approximation of the efficiency-

optimal solution to the RDP privacy knapsack problem. Finally, in §2.4.4 we adapt DPack to the

online case.

2.4.1 Efficient Scheduling with Traditional DP

We define the global efficiency of a scheduling algorithm as either the number of scheduled

tasks or, more generally, the sum of weights 𝑤𝑖 of scheduled tasks, for cases when different tasks

have different utilities (a.k.a. profits or weights) to the organization. When the goal is to optimize

global efficiency, we can model privacy budget scheduling in a multi-block system such as TFX

as a multidimensional knapsack problem. First, recall that traditional DP composes, in its simplest

form, using an additive arithmetic: the composition of two (𝜖1, 𝛿1)-DP and (𝜖2, 𝛿2)-DP tasks is

(𝜖1 + 𝜖2, 𝛿1 + 𝛿2)-DP. In this paper we assume 𝛿 is extremely small (as it should always be, since

it is a failure probability of the pure DP guarantee), hence we ignore the additive effects on the 𝛿

parameters and instead focus on the additive effects of the 𝜖 parameters, which are typically many

orders of magnitude larger than the 𝛿 parameters.

Knapsack problem formulation. Consider a fixed number of 𝑛 tasks (𝑡1, . . . , 𝑡𝑛) that need to be

scheduled over 𝑚 blocks, each with 𝑐 𝑗 remaining capacity. Each task has a demand vector 𝑑𝑖 𝑗 ,

12



(a) Inefficient allocation with DPF (b) Efficient allocation

Fig. 2.1: Example of allocations with basic DP accounting. Task 𝑇1 requests privacy budget from 3
blocks, 𝐵1, 𝐵2, 𝐵3. Tasks 𝑇2, 𝑇3, 𝑇4 request slightly more privacy budget, but each one from one distinct
block: 𝐵1, 𝐵2, 𝐵3, respectively. In (a), DPF sorts these tasks based on their dominant shares: 𝑇1 first (because
its dominant share is lower, even though it demands budget from all the blocks), then 𝑇2, 𝑇3, 𝑇4 in arbitrary
order. After 𝑇1 is scheduled, there is no more budget for other tasks. Meanwhile, in (b) an efficient scheduler
can allocate 3 tasks.

which represents the 𝜖 demand by task 𝑖 for block 𝑗 , and a weight 𝑤𝑖 if it is successfully scheduled

(when 𝑤𝑖 is equal across all tasks, the problem is to maximize the number of scheduled tasks). We

can formulate this problem as the standard multidimensional knapsack problem [31], where 𝑥𝑖 are

binary variables:

max
𝑥𝑖∈{0,1}

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 subject to ∀ 𝑗 ∈ [𝑚] :
𝑛∑︁
𝑖=1

𝑑𝑖 𝑗𝑥𝑖 ≤ 𝑐 𝑗 . (2.3)

W.l.o.g., we assume there is not enough budget to schedule all tasks: ∀ 𝑗 ∈ [𝑚] :
∑𝑛
𝑖=1 𝑑𝑖 𝑗 > 𝑐 𝑗 .

Otherwise, the knapsack problem is trivial to solve. If some blocks have enough budget but not

others, we can set the blocks with enough budget aside, solve the problem only on the blocks with

contention, and incorporate the remaining blocks at the end.

The need for heuristics. The multidimensional knapsack problem is known to be NP-hard [31],

so DP scheduling cannot be solved exactly, even in the offline case. There exist some general-

purpose polynomial approximations for this problem, but they are exponential in the approximation

parameter and become prohibitive for large numbers of dimensions (for us, many blocks). In

§2.7.2, we show that the Gurobi [32] solver quickly becomes intractable with just 7 blocks!

13



A standard approach to practically solve knapsack problems is to develop specialized approx-

imations for a specific domain of the problem, typically using a greedy algorithm that sorts tasks

according to a task efficiency metric (denoted 𝑒𝑖), and then allocates tasks in order, starting from the

highest-efficiency tasks, until the algorithm cannot pack any new tasks [31]. In such algorithms,

the main challenge is coming up with good task efficiency metrics that leverage domain charac-

teristics to meaningfully approximate the optimal solution while remaining practical in terms of

runtime.

Inefficiencies under DPF, seen as a scheduling heuristic. Turns out we can model DPF – our

previous, fairness-oriented algorithm and still the state-of-the-art privacy scheduling algorithm

– as a greedy heuristic for privacy knapsack. DPF schedules tasks with the smallest dominant

share (max 𝑗
𝑑𝑖 𝑗
𝑐 𝑗

) first. Folding in task weights, this becomes equivalent to a greedy algorithm with

an efficiency metric defined as: 𝑒𝑖 := 𝑤𝑖

max 𝑗

𝑑𝑖 𝑗

𝑐 𝑗

. Unfortunately, given this efficiency metric, DPF

can stray arbitrarily far from the optimal even in simple cases. The reason lies in the maxima

over 𝑗 , which is crucial to ensure the fair distribution of DP budget, but causes DPF to ignore

multidimensionality in data blocks. Fig. 2.1 gives an example using traditional DP and a workload

of 4 tasks. DPF sorts tasks by dominant share and schedules only one task. Meanwhile, a better

efficiency metric would consider the “area” of a task’s demand, thereby sorting tasks 𝑇2, 𝑇3 and

𝑇4 before 𝑇1, resulting in 3 tasks getting scheduled. Thus, DPF, despite its compelling weighted

fairness guarantees, is merely a greedy heuristic when it comes to optimizing for efficiency; it is

not even a proper approximation of the efficiency-optimal allocation, as it can stray arbitrarily far

from it.

Area-based metric for efficient scheduling over blocks. We take inspiration from single-dimensional

knapsacks, in which the efficiency 𝑒𝑖 of task 𝑖 is usually defined as the task’s weight-to-demand

ratio: 𝑒𝑖 := 𝑤𝑖/𝑑𝑖. A natural extension to multiple blocks uses a known heuristic for multidimen-

sional knapsacks [33] to capture the entire demand of a task:

𝑒𝑖 :=
𝑤𝑖∑
𝑗
𝑑𝑖 𝑗
𝑐 𝑗

, (2.4)

14



where 𝑑𝑖 𝑗
𝑐 𝑗

is task 𝑖’s DP budget demand for block 𝑗 , normalized by the remaining capacity of block

𝑗 . This normalization is important to express the scarcity of a demanded resource. Unlike the

DPF fair scheduling metric, Eq. 2.4 considers the entire “area” of a task’s demand to compute

its efficiency, addressing the inefficiency from Fig. 2.1. A task requesting a large budget across

blocks is not scheduled even if its demand on any block (dominant share) is small. As we shall see

in experimental evaluation, this heuristic leads to more efficient scheduling than under DPF under

traditional DP.

2.4.2 Efficient Scheduling Under RDP Accounting

The above heuristic is satisfactory for traditional DP accounting, but practitioners and state-of-

the-art ML algorithms use the much more efficient RDP accounting. With RDP, multiple bounds

on the privacy loss can be computed, for various RDP orders 𝛼 (Eq. 2.3.2). This yields an RDP

order curve 𝜖 (𝛼) for that computation. For instance, adding noise from a Gaussian with standard

deviation 𝜎 into a computation results in 𝜖 (𝛼) = 𝛼

2𝜎2 . Other mechanisms, such as subsampled

Gaussian (used in DP-SGD) or Laplace (used in simple statistics), induce other RDP curves. These

curves are highly non-linear and their shapes differ among each other. This makes it difficult to

know analytically what the privacy loss function will look like when composing multiple compu-

tations with heterogeneous RDP curves. For this reason, typically the RDP 𝜖 bound is computed

on a few discrete 𝛼 values ({1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 8, 16, 32, 64} [23]), on which the composi-

tion is performed. Importantly, composition of 𝜖 parameters at each 𝛼 value is still additive, a key

element of RDP’s practicality.

Fig. 2.2a shows RDP curves for three example computations, each using a popular DP mecha-

nism: the Gaussian would be used for a multidimensional statistic (a histogram); the subsampled

Gaussian would be used in DP-SGD training; and Laplace would be used for a simple statistic (an

average). All these are plausible to co-exist as tasks in an ML/data analytics cluster. These differ-

ent computations exhibit different RDP curves, with different orderings of the Rényi divergence

bound at different 𝛼’s. The subsampled Gaussian is tighter at lower 𝛼 values; the Laplace is tighter

15



 0.01

 0.1

 1

 10

 100

 4  16  64

N
o

rm
a

liz
e

d
 R

D
P

 e
p

s
ilo

n

RDP order (alpha)

Composition
Sampled Gaussian
Gaussian
Laplace

(a) RDP curves

“best alpha” for 
Composition

(b) DP translation

Fig. 2.2: Example RDP curves and DP translation. (a) RDP curves for Gaussian, subsampled Gaussian,
and Laplace mechanisms, each with std-dev 𝜎 = 2, plus their composition. (b) Translation to (𝜖𝐷𝑃, 10−6)-
DP. The “best” (i.e., tightest) alpha differs among mechanisms. For composition, best is 𝛼 = 6, giving
𝜖𝐷𝑃 = 5.5.

for large 𝛼’s. The figure also shows the RDP curve for the composition of the three computations.

Fig. 2.2b shows the translation of these four curves into traditional DP (using Eq. 2.2). For

each computation, any value of 𝛼 > 1 will translate into a different traditional 𝜖 . Some traditional

𝜖 translations are very loose, others are tighter, but they are all valid simultaneously. Because

of this, we can pick the 𝛼 that gives us the best traditional 𝜖 guarantee and disregard the rest as

loose bounds. This best alpha differs from computation to computation: in our example, for the

Gaussian it is 𝛼 ≈ 16; for the subsampled Gaussian 𝛼 ≈ 6; and for the Laplace 𝛼 ≥ 64. The best

alpha for the composition of all three computations is 𝛼 ≈ 6, yielding (𝜖 = 5.5, 𝛿 = 10−6)-DP.

If we were to analyze and compose the three computations directly in traditional DP, we would

obtain a looser global guarantee of (𝜖 = 7.8, 𝛿 = 10−6)-DP. This gap grows fast with the number

of computations. Herein lies RDP’s power, but also a significant challenge when trying to allocate

its privacy budget across competing computations.

Notice that when translating from RDP to traditional DP with Eq. 2.2, one chooses the most

advantageous 𝛼 for the final traditional DP guarantee, ignoring all other RDP orders. This new 𝛼

dimension therefore has a different semantic than the traditional multidimensional knapsack one.

16



Indeed, the traditional knapsack dimension semantic is that an allocation has to be within budget

along all dimensions. This is a good fit for our block dimension, as we saw in §2.4.1. Instead, an

allocation is valid along the 𝛼 dimension as long as the allocation is within budget for at least one

dimension. This creates opportunities for efficient scheduling, as the allocator can go over-budget

for all but one 𝛼 order. It also creates a new challenge, as the 𝛼 order that will yield the most

efficient allocation is unknown a priori and depends on the chosen combination of tasks. Since

the traditional multidimensional knapsack does not encode this new semantic, we define a new

multidimensional knapsack problem for efficient RDP scheduling.

The RDP privacy knapsack problem. To accommodate RDP, we need to modify the standard

multidimensional knapsack problem to support alpha orders for each block and task demand. We

express the capacity as 𝑐 𝑗𝛼 (the available capacity of block 𝑗 on order 𝛼), each demand vector as

𝑑𝑖 𝑗𝛼 (the demand of task 𝑖 on block 𝑗’s order 𝛼), and require that the sum of the demands will be

smaller or equal to the capacity for at least one of the alpha orders. We thus formulate the privacy

knapsack as follows:

max
𝑥𝑖∈{0,1}

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 subject to ∀ 𝑗 ∈ [𝑚], ∃𝛼 ∈ 𝐴 :
𝑛∑︁
𝑖=1

𝑑𝑖 𝑗𝛼𝑥𝑖 ≤ 𝑐 𝑗𝛼 . (2.5)

Property 1. The decision problem for the privacy knapsack problem is NP-hard.

Property 2. In the single-block case, there is a fully polynomial time approximation scheme (FP-

TAS) for privacy knapsack, i.e., with 𝑤max the highest possible global efficiency, for any 𝜂 > 0 we

can find an allocation with global efficiency 𝑤̂ such that 𝑤max ≤ (1 + 𝜂)𝑤̂, with a running time

polynomial in 𝑛 and 1/𝜂.

Property 3. For 𝑚 ≥ 2 blocks, there is no FPTAS for the privacy knapsack problem unless P=NP.

While Prop. 1 and 3 are disheartening (though perhaps unsurprising), Prop. 2 gives a glimmer

of hope that at least for single-block instances, we can solve the problem tractably. Indeed, as we

shall see, this property is crucial for our solution.

DPF with multiple RDP alpha orders. Fair scheduling with DPF for RDP can once again be

17



(a) Inefficient allocation with DPF (b) Efficient allocation

Fig. 2.3: Example of allocations with RDP accounting. In (a), DPF treats RDP orders like a regular re-
source and orders tasks by dominant share, allocating only 2 tasks in this example. Meanwhile, (b) leverages
the fact that only one order per block has to be below the capacity (here, 𝛼1 for block 𝐵1 and 𝛼2 for block
𝐵2). Tasks 𝑇3 and 𝑇5 have a large dominant share of 1.5 but are efficient because they request only 0.5 for
𝐵1’s best alpha, 𝛼1.

expressed as an ordering heuristic for the privacy knapsack, in which efficiency is defined as 𝑒𝑖 :=
𝑤𝑖

max 𝑗 𝛼

𝑑𝑖 𝑗 𝛼

𝑐 𝑗𝛼

. However, this approach is even more inefficient than under traditional DP.

In addition to the previous multi-block inefficiency (§2.4.1), this fair scheduling approach ex-

hibits a new inefficiency under RDP, regardless of the number of blocks it is invoked on (e.g., even

if applied to non-block-based DP systems, such as DP SQL databases). Fig. 2.3 gives an example

using two blocks and a workload of 6 tasks, each requesting only 1 block. In Fig. 2.3a, DPF sorts

tasks by the highest demands across all 𝛼’s and allocates only 2 tasks. A better efficiency metric

would sort tasks by demands at the 𝛼 value that can pack the most tasks (a.k.a., best alpha for

composition), ultimately scheduling 4 tasks in Fig. 2.3b. Note that the best alpha is not necessarily

the same for each block.

We conclude that an efficiency metric that simply takes the maximum of the dominant shares

is neither efficient for scheduling multiple privacy blocks, nor for scheduling privacy budget in

systems that use RDP accounting. However, a direct extension of our “area based” efficiency

metric in Eq. 2.4 does not appropriately handle RDP alpha orders either, as it does not account for

18



the specific semantic of the 𝛼 order. We next describe our new efficiency metric, that is optimized

for efficiently scheduling tasks across multiple blocks and supports RDP.

2.4.3 DPack Algorithm

Intuitively, to support the “at least one” semantic of the 𝛼 order from RDP, we need an ef-

ficiency metric that makes it less attractive to pack a task that consumes a lot of budget at what

will ultimately be the best alpha, defined as the RDP order that packs the most tasks (or the most

weight) while remaining under budget. That best alpha is ultimately the only one for which the

demands of tasks matter and hence should be the one used for computing an efficiency metric. The

challenge is that for workloads consisting of tasks with heterogeneous RDP curves, the best alpha

is not known a priori. Our idea is to approximate it on a smaller set of RDP curves, and to focus a

task’s efficiency metric on that best alpha as the only relevant dimension. Recall from Prop. 2 that

in the single-block case, we can solve privacy knapsack with polynomial-time 𝜂-approximation

for arbitrarily small 𝜂 > 0. This means we can solve a single-block knapsack problem separately

for each block 𝑗 that determines the best alpha that will pack the most tasks (or maximal weight)

among tasks requesting block 𝑗 , taking only their request for that block into account. We define the

maximum utility for block 𝑗 and order 𝛼 as 𝑤max
𝑗𝛼

:= max𝑥𝑖
∑𝑛
𝑖:𝑑𝑖 𝑗 𝛼>0 𝑥𝑖𝑤𝑖 subject to

∑
𝑖 𝑥𝑖𝑑𝑖 𝑗𝛼 ≤ 𝑐 𝑗𝛼.

We take 𝑤̂max
𝑗𝛼

a 2
3𝜂-approximation of 𝑤max

𝑗𝛼
(2

3 is justified by proof below).

Based on this, we define the efficiency of task 𝑖 as:

𝑒𝑖 :=
𝑤𝑖∑

𝑗𝛼 (
𝑑𝑖 𝑗 𝛼
𝑐 𝑗 𝛼

if (𝛼 == arg max𝛼′ 𝑤̂max
𝑗𝛼′ ) else 0)

(2.6)

Alg. 1 shows DPack, our greedy approximation with the efficiency metric in Eq. 2.6. This

algorithm addresses both of the problems we identified with DPF. Moreover, we show that the

manner in which DPack handles RDP is not just better than DPF in particular, but rather has two

important generally desirable properties. First, DPack reduces to the traditional multidimensional

19



Algorithm 1 DPack Offline Algorithm
Input: tasks 𝑖, blocks 𝑗 , RDP orders 𝛼 capacities 𝑐 𝑗𝛼
Input: approximation factor 𝜂, demands 𝑑𝑖 𝑗𝛼, weights 𝑤𝑖
function COMPUTEBESTALPHA(block 𝑗)

for ∀𝛼 do
ˆ𝑤max

𝑗𝛼 ← SINGLEBLOCKKNAPSACK(𝑐𝛼, 𝑑𝑖 𝑗𝛼, 𝑤𝑖, 2
3𝜂)

return arg max𝛼 ˆ𝑤max
𝑗𝛼

function COMPUTEEFFICIENCY(task 𝑖, best alphas 𝛼̂max
𝑗

)
return 𝑤𝑖/

∑
𝑗 (𝑑𝑖 𝑗 𝛼̂max

𝑗
/𝑐 𝑗 𝛼̂max

𝑗
)

function CANRUN(task 𝑖)
return ∀ 𝑗 , ∃𝛼 :

∑𝑖
𝑖′=1 𝑑𝑖′ 𝑗𝛼 ≤ 𝑐 𝑗𝛼

function SCHEDULE(tasks 𝑖)
for ∀ 𝑗 do

𝛼̂max
𝑗
← COMPUTEBESTALPHA(𝑐 𝑗𝛼, 𝑑𝑖 𝑗𝛼, 𝑤𝑖)

sorted_tasks← tasks.sortBy(COMPUTEEFFICIENCY(𝛼̂max
𝑗

))
for 𝑖 in sorted_tasks do

if CANRUN(𝑑𝑖 𝑗𝛼) then
Run task 𝑖, consuming the demanded budget

knapsack efficiency metric of Eq. 2.4 when only one 𝛼 exists, e.g. for traditional DP:

Property 4. If the dimension of 𝛼 values is one (e.g., with traditional DP), DPack reduces to the

traditional multidimensional knapsack heuristic from Eq. 2.4.

Proof. With one dimension, 𝛼 = arg max𝛼′ 𝑤̂max
𝑗𝛼′ . □

Second, DPack is a guaranteed approximation of the optimal in the specific cases when such

an approximation is possible, the single-block case:

Property 5. In the single-block case, DPack is a (1
2 + 𝜂)-approximation algorithm for privacy

knapsack.

Proof. Call 𝛼̂ ≜ arg max𝛼′ 𝑤̂max
𝑗𝛼′ . By construction we have 𝑤max

𝑗 𝛼̂
≤ (1 + 2

3𝜂)𝑤̂
max
𝑗 𝛼̂

. In the single-

block (index 𝑗) case, Eq. 2.6 means that tasks are greedily allocated by decreasing 𝑤𝑖

𝑑𝑖 𝑗 𝛼̂
, a well

known 1/2-approximation to the one dimensional knapsack problem [31]. Hence, 𝑤max
𝑗 𝛼̂
≤ (1 +

2
3𝜂)𝑤̂

max
𝑗 𝛼̂
≤ (1 + 2

3𝜂) (1 +
1
2 )

∑𝑛
𝑖=1 𝑥𝑖𝑤𝑖 = (1 + 1

2 + 𝜂)
∑𝑛
𝑖=1 𝑥𝑖𝑤𝑖. □

20



Because of Prop. 3, a similar multi-block efficiency guarantee cannot be formulated (for DPack

as well as any other poly-time algorithm). However, §5.6 shows that in practice, DPack performs

close to the optimal solution of privacy knapsack in terms of global efficiency, yet it is a computa-

tionally cheap alternative to that intractable optimal solution.

2.4.4 Adapting to the Online Case

In practice, new tasks and blocks arrive dynamically in a system such as TFX, motivating

the need for an online scheduling algorithm. We adapt our offline algorithm to the online case

by scheduling a batch of tasks on the set of available blocks every 𝑇 units of time. To prevent

expensive tasks from consuming all the budget prematurely, similar to DPF, we schedule each

batch on a fraction of the total budget capacity: at each scheduling step we unlock an additional

1/𝑁 fraction of the block capacity. More precisely, at each scheduling time 𝑡 = 𝑘𝑇 , we execute

Alg. 1 on the tasks and blocks currently in the system, but we replace block 𝑗’s capacity by:

𝑐𝑡𝑗𝛼 =
min(⌈(𝑡 − 𝑡 𝑗 )/𝑇⌉, 𝑁)

𝑁
𝜖 𝑗𝛼 −

∑︁
𝑖′∈𝐴𝑡

𝑑𝑖′ 𝑗𝛼,

where 𝜖 𝑗𝛼 is the total capacity of block 𝑗 (computed from Prop. 2.2), 𝑡 𝑗 is the arrival time of

block 𝑗 , ⌈(𝑡 − 𝑡 𝑗 )/𝑇⌉ is the number of scheduling steps the block has witnessed so far (including

the current step), and 𝐴𝑡 is the set of tasks previously allocated.

As with the offline algorithm, at the time of scheduling all the tasks are sorted by the scheduling

algorithm. The scheduler tries to schedule tasks one-by-one in order. Any tasks that did not get

scheduled remain in the system until the next scheduling time, and any unused unlocked budget

remains available for future tasks. Users also specify a per-task timeout after which the task is

evicted. 𝑇 is a parameter of the system that controls how many tasks get batched (and delayed)

before getting scheduled. We evaluate its effect empirically in Fig. ??, and show that beyond a

reasonable batch size all algorithms we study are relatively insensitive to 𝑇 .

Finally, to support a global (𝜖, 𝛿)-DP guarantee for online tasks over continuous data streams,

21



we use the data block composition introduced by Sage [9, 34]: each data block is associated with

a privacy filter, a DP accounting mechanism enabling adaptive composition under a preset upper-

bound on the privacy loss [35, 36, 37]. Each filter is initiated with 𝜖, 𝛿 for traditional DP, or

𝜖 (𝛼) = 𝜖 − log(1/𝛿)
𝛼−1 for RDP. The RDP initial value ensures that translating back to traditional DP

with Eq. 2.2 guarantees (𝜖, 𝛿)-DP. A task is granted if, and only if, all filters grant the request (all

blocks have enough budget left). This ensures the following property:

Property 6. DPack enforces (𝜖, 𝛿)-DP over adaptively chosen computations and privacy demands

𝜖𝑖 (𝛼).

Proof. We provide a proof sketch following the structure used in [9, Theorem 4.2] for basic com-

position. Each task has an (adaptive) RDP requirement for all blocks, with 𝜖 (𝛼) = 0 for non-

requested blocks. Each data block is associated with a privacy filter [37, Algorithm 1]. A task runs

if and only if all filters accept the task: applying [37, Theorem 1] ensures 𝜖 (𝛼) = 𝜖 − log(1/𝛿)
𝛼−1 -RDP

holds for each block. Applying Eq. 2.2 concludes the proof. □

2.5 Applicability

It is worth reflecting on the characteristics of workloads under which DPack provides the most

benefit compared to alternatives such as DPF. §2.4.1 gives examples of inefficient DPF operation

with multiple blocks and alpha orders. However, DPF does not always behave inefficiently when

invoked on multiple blocks or with multiple alpha orders. For example, if all the tasks in Fig. 2.1

uniformly demanded three blocks, then DPF would make the optimal choice. The same would

happen if all the tasks in Fig. 2.3 had RDP curves that were all ordered in the same way across

alphas, so that the ordering of highest demands is the same as the ordering of demands at the best

alpha order. In such cases, DPack’s “intelligence” – its appropriate treatment of the multiple blocks

and focus on the best alpha – would not provide any benefit over DPF.

Instead, DPack should be expected to improve on DPF when the workload exhibits heterogene-

ity in one or both of the following two dimensions: (1) number of demanded blocks and (2) best

alphas. (1) The example in Fig. 2.1 exhibits high heterogeneity in demanded blocks, with Task 1

22



demanding three blocks while all the others demanding just one block. (2) The example in Fig. 2.3

exhibits heterogeneity in the best alpha for the different curves. In evaluation (§2.7.2), we demon-

strate this effects using a microbenchmark that is able to explore a wide range of more or less

heterogeneous workloads, showing that indeed, in workloads with more heterogeneity DPack sig-

nificantly outperforms DPF while in cases of homogeneity among all dimensions, DPack performs

similarly to DPF.

For real-world DP ML workloads, we believe it is likely that heterogeneity of demands in both

dimensions – number of blocks and best alphas – would be realistic. For example, a pipeline that

computes some summary statistics over a dataset might run daily on just the latest block, while

a large neural network may need to retrain on data from the past several blocks. This would

result in heterogeneity in number of demanded blocks. Similarly, pipelines that compute simple

statistics would likely employ a Laplace mechanism, while a neural network training would employ

subsampled Gaussian. This would inevitably result in heterogeneity in best alphas, because, as

shown in Fig. 2.2, different mechanisms exhibit very different RDP curves.

Thus, DPack is broadly applicable to: (1) systems that exhibit both of these dimensions of het-

erogeneity (as would DP ML workloads in TFX-like systems, or static SQL databases with multi-

ple partitions); (2) systems that operate on a single block (such as non-partitioned SQL databases)

but perform RDP accounting; (3) systems that operate on multiple blocks but perform other types

of DP accounting, including traditional DP. For all these settings, DPack would provide a benefit

when the workload exhibits heterogeneity.

2.6 Implementation

We implement DPack in two artifacts that we open-source at https://github.com/

columbia/dpack. The first is a Kubernetes-based implementation of DPack. We extend

PrivateKube’s extension to Kubernetes in multiple ways. We add support for batched scheduling

(i.e. schedule tasks every 𝑇 time units) and task weights. We implement DPack, and add sup-

port for solving the single block knapsack using Gurobi with the Go goop interface [38]. The

23

https://github.com/columbia/dpack
https://github.com/columbia/dpack


Sec. Workload Setting Prototype Results
Q1 §2.7.2 microbenchmark offline simulator Fig. 2.4
Q2 §2.7.2 microbenchmark offline simulator Fig. 2.5
Q3 §2.7.3 Alibaba, Amazon online simulator Fig. 2.6-2.7
Q4 §2.7.4 Alibaba online Kubernetes Fig. 2.8

Tab. 2.1: Workload and methodology of each evaluation question.

Kubernetes-based implementation has 924 lines of Go. The second artifact is a simulator that lets

users easily specify and evaluate scheduling algorithms for the offline and online settings under

different workloads. We use a discrete event simulator [39] to efficiently support arbitrarily fine

time resolutions. Users use configuration files to define the workload and resource characteristics

to parameterize scheduling for both online and offline cases. For example, they can define block

and task arrival frequencies, the scheduling period and the block unlocking rate. The simulator also

supports plugging different definitions of efficiency, and different block selection patterns for tasks

(policies). Currently, the simulator supports two patterns: a random selection of blocks without

replacement, and a selection of most recent blocks. The simulator has 6,718 lines of Python.

2.7 Evaluation

We seek to answer four evaluation questions:

Q1: On what types of workloads does DPack improve over DPF, and how close is DPack to Optimal?

Q2: How do the algorithms scale with increasing load?

Q3: Does DPack present an efficiency improvement for plausible workloads? How much does it

trade fairness?

Q4: How does our implementation perform in a realistic setting?

These questions are best answered with distinct workloads and settings, summarized in Tab. 2.1.

First, Q1 and Q2 are best addressed in an offline setting with a simple, tunable workload. To this

end, we develop a microbenchmark consisting of multiple synthetic tasks with distinct RDP curves

and a knob that controls the heterogeneity in demanded blocks and RDP curves (§2.7.2). Second,

24



Q3 and Q4 require a more realistic, online setting and realistic workloads. In absence of a pro-

duction trace of DP ML tasks, we develop a workload generator, called Alibaba-DP, based on

Alibaba’s 2022 ML cluster trace [17]. We map the Alibaba trace to a DP ML workload by map-

ping system metrics to privacy parameters (§2.7.3). While we cannot claim Alibaba-DP is realistic,

it is the first objectively-derived DP task workload generator, and we believe it is a more plausible

workload than those previously used in related works. We plan to release it publicly. Third, Q1-Q3

are algorithmic-level questions independent of implementation and hence we evaluate them in the

simulator. However, Q4 requires an actual deployment on Kubernetes, so we dedicate the last part

of this section to an evaluation on Kubernetes with the Alibaba-DP workload (§2.7.4).

2.7.1 Methodology

Baselines. The main baseline, common across all experiments, is DPF. We consider two other

baselines: Optimal, which is the exact Gurobi-derived privacy knapsack solution for the offline

setting, and FCFS (first-come-first-serve), which schedules tasks in an online setting based on their

order of arrival. The former is relevant for offline experiments of small scale (few tasks/blocks),

since it is not tractable for larger ones. The latter is relevant for online experiments only.

Metrics. Global efficiency: defined as either the number of allocated tasks or the sum of weighted

allocated tasks. Scheduler runtime: measures how fast (in seconds), computationally, a scheduling

algorithm is. Scheduling delay: measures how long tasks are blocked in the waiting queue, for

example because of insufficient unlocked budget or because of the batching period𝑇 ; it is measured

in block inter-arrival periods (e.g., if blocks arrive daily, the unit is days). In real life, the total

waiting time for a task will be the scheduling delay plus scheduler runtime; for our experiments,

since the two are in different units, we never combine them. We expect in reality scheduler runtimes

to be small compared to scheduling delays, for all the evaluated algorithms except for Optimal.

Machine. We use a server with 2 Intel Xeon CPUs E5-2640 v3 @ 2.60GHz (16 cores) and 110GiB

RAM.

25



2.7.2 Offline Microbenchmark (Q1, Q2)

Microbenchmark. We design the microbenchmark to expose knobs that let us systematically

explore a spectrum of workloads ranging from less to more heterogeneous in demanded blocks

and RDP curve characteristics. The microbenchmark consists of 620 RDP curves corresponding

to five realistic DP mechanisms often incorporated in DP ML workloads: {Laplace, Subsampled

Laplace, Gaussian, Subsampled Gaussian, composition of Laplace and Gaussian}. We sample

and parameterize these curves with the following methodology meant to expose two heterogeneity

knobs:

Knob 𝜎blocks: To exercise heterogeneity in requested blocks, we sample the number of re-

quested blocks from a discrete Gaussian with mean 𝜇𝑏𝑙𝑜𝑐𝑘𝑠 and standard deviation 𝜎𝑏𝑙𝑜𝑐𝑘𝑠. The

requested blocks are then chosen randomly from the available blocks. Increasing 𝜎𝑏𝑙𝑜𝑐𝑘𝑠 increases

heterogeneity in demanded blocks.

Knob 𝜎𝛼: To exercise heterogeneity in best alphas, we first normalize the demands (for a block

with initial budget (𝜖, 𝛿) = (10, 10−7)) and enforce that there is at least one curve with best alpha

𝛼 for each 𝛼 ∈ {3, 4, 5, 6, 8, 16, 32, 64}. Second, we group tasks with identical best alphas to form

“buckets”. For each new task, we pick a best alpha following a truncated discrete Gaussian over

the bucket’s indexes, centered in the bucket corresponding to 𝛼 = 5 with standard deviation 𝜎𝛼.

Third, we sample one task uniformly at random from that bucket. After dropping some outliers

(e.g. curves with 𝜖min < 0.05), we rescale the curves to fit any desired value of the average and

the standard deviation of 𝜖min for each best alpha, by shifting the curves up or down. This scaling

lets us change the distribution in best alphas while controlling for the average size of the workload

(in a real workload, the value of 𝜖min might be correlated with best alpha and other parameters).

Increasing 𝜎𝛼 increases workload heterogeneity in best alphas.

We explore each heterogeneity knob separately. First, we vary 𝜎𝑏𝑙𝑜𝑐𝑘𝑠 while keeping 𝜎𝛼 = 0

(i.e. all the tasks have best alpha equal to 5) and 𝜇𝑏𝑙𝑜𝑐𝑘𝑠 = 10. Second, we vary 𝜎𝛼 while keeping

𝜎𝑏𝑙𝑜𝑐𝑘𝑠 = 0, 𝜇𝑏𝑙𝑜𝑐𝑘𝑠 = 1 (i.e. all the tasks request the same single block). In both cases, we keep

𝜖min constant for all tasks. We set 𝜖min = 0.1 for the 𝜎𝑏𝑙𝑜𝑐𝑘𝑠 experiment (to keep the number of

26



 25

 50

 75

 100

 0  1  2  3

n
u

m
b

e
r 

o
f 
a

llo
c
a
te

d
 t
a

s
k
s

σblocks (stdev of num blocks)

Optimal
DPack
DPF

(a) Block heterogeneity

 50

 100

 150

 200

 0  2  4  6  8

n
u

m
b

e
r 

o
f 
a

llo
c
a
te

d
 t
a

s
k
s

σ
α
 (stdev of best alpha)

Optimal
DPack
DPF

(b) Best alpha heterogeneity

Fig. 2.4: (Q1) DPack under workloads with variable heterogeneity using our microbenchmark.
Global efficiency of the algorithms (y axes) in the offline setting, as heterogeneity increases on the x axes: (a)
variation in number of blocks requested, (b) variation in best alphas for the tasks’ RDP curves. Q1 Answer:
DPack tracks Optimal closely and significantly outperforms DPF on workloads with high heterogeneity:
0–161% improvement for Fig. 2.4a and 0–67% for Fig. 2.4b.

tasks small enough to be tractable for Optimal) and 𝜖min = 0.005 for the 𝜎𝛼 experiment (to have a

large number of tasks with high diversity in 𝜖 (𝛼)).

Q1: On what types of workloads does DPack improve over DPF, and how close is DPack

to Optimal? Fig. 2.4 compares the schedulers’ global efficiency in the offline setting, as the

heterogeneity of the workload increases in the two preceding dimensions: the number of requested

blocks (Fig. 2.4a) and the best alphas of the tasks’ RDP curves (Fig. 2.4b). Across the entire

spectrum of heterogeneity, DPack closely tracks the optimal solution, staying within 23% of it.

For workloads with low heterogeneity (up to 0.5 stdev in blocks and 1 stdev in best alphas), there

is not much to optimize. DPF itself therefore performs close to Optimal and hence DPack does not

provide significant improvement. As heterogeneity in either dimension increases, DPack starts to

outperform DPF, presenting significant improvement in the number of allocated tasks for over 3

stdev in blocks and 2 stdev in best alphas: 161% and 67% improvement, respectively.

As all three schedulers try to schedule as many tasks as they can with a finite privacy budget,

these 1.0–2.6× additional tasks that DPack is able to schedule are tasks that DPF would never be

able to schedule, because the requested blocks’ budget has been depleted for posterity.

Q2: How do the algorithms scale with increasing load? Fig. 2.5a shows the runtime of our

27



 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1000  2000  3000  4000  5000

s
c
h

e
d

u
le

r 
ru

n
ti
m

e
 (

s
)

number of submitted tasks

Optimal
DPack
DPF

(a) Scheduler runtime as a function of offered
load.

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0  1000  2000  3000  4000  5000

n
u

m
b

e
r 

o
f 
a

llo
c
a
te

d
 t
a

s
k
s

number of submitted tasks

Optimal
DPack
DPF

(b) Number of allocated tasks as a function of
offered load.

Fig. 2.5: (Q2) Scalability under increasing load from the microbenchmark. (a) Scheduler runtime
and (b) number of allocated tasks, as a function of offered load (x axes). Q2 Answer: Optimal becomes
intractable quickly while DPack and DPF remain practical even at high load.

simulator on a single thread. We use a single thread for a fair comparison, but some schedulers can

be parallelized (our Kubernetes implementation is indeed parallelized). We use the microbench-

mark with heterogeneity knobs 𝜎𝛼 = 4, 𝜎𝑏𝑙𝑜𝑐𝑘𝑠 = 10, 𝜇𝑏𝑙𝑜𝑐𝑘𝑠 = 1, 𝜖min = 0.01 and 7 available

blocks. Optimal’s line stops at 𝑥 = 200 tasks because after that its execution never finishes. DPack

takes slightly longer than DPF to run because it needs to solve multiple single-block knapsacks.

Fig. 2.5b shows scheduler efficiency in number of allocated tasks as a function of the number of

tasks in the system. DPF performs the worst, unable to efficiently schedule tasks across multiple

blocks and varying alpha order demands. DPack matches Optimal (up to Optimal’s 200 task limit)

and schedules more tasks when it has a larger pool of tasks to choose from, since it can pick the

most efficient tasks. Since the workload has a finite number of different tasks, as we increase the

load, both schedulers reach a plateau where they allocate only one type of task.

2.7.3 Online Plausible Workload (Q3)

We now evaluate online scenarios where tasks and blocks arrive dynamically, and budget is

unlocked over time. The simulator uses a virtual unit of time, where one block arrives each time

unit. Tasks always request the 𝑚 most recent blocks. For all the evaluated policies we run a batch

28



scheduler on the available unlocked budget, every 𝑇 blocks.

The Alibaba-DP Workload. We create a macrobenchmark based on Alibaba’s GPU cluster

trace [17]. The trace includes 1.1 million tasks submitted by 1,300 users over 3 months, and

contains each task’s resource demands and the resource allocation over time. We use these metrics

as proxies for task DP budget demands, which do not exist in this trace.

We use machine type (CPU/GPU) as a proxy for DP mechanism type. We assume CPU-based

tasks correspond to mechanisms used for statistics, analytics, or lightweight ML (e.g. XGBoost

or decision trees [40, 41]), while GPU-based tasks correspond to deep learning mechanisms (DP-

SGD or DP-FTRL [42, 43]). We map each CPU-based task to one of the {Laplace, Gaussian,

Subsampled Laplace} curves and each GPU-based task to one of the {composition of Subsampled

Gaussians, composition of Gaussians} curves, at random. We use memory usage as a proxy for

privacy usage by setting traditional DP 𝜖 as an affine transformation of memory usage (in GB

hours). We don’t claim that memory will be correlated with privacy in a realistic DP workload,

but that the privacy budget might follow a similar distribution (e.g. a power law with many tasks

having small requests and a long tail of tasks with large requests). We compute the number of

blocks required by each task as an affine function of the bytes read through the network. Unlike

the privacy budget proxy, we expect this proxy to have at least some degree of realism when data

is stored remotely: tasks that don’t communicate much over the network are probably not using

large portions of the dataset. Finally, all tasks request the most recent blocks that arrived in the

system and are assigned a weight of 1. We truncate the workload by sampling one month of the

total trace and cutting off tasks that request more than 100 blocks or whose smallest normalized

RDP 𝜖 is not in [0.001, 1]. The resulting workload, called Alibaba-DP, is an objectively derived

version of the Alibaba trace. We use it to evaluate DPack under a more complex workload than our

synthetic microbenchmark or PrivateKube’s also synthetic workload. We open-source Alibaba-DP

at https://github.com/columbia/alibaba-dp-workload.

Q3: Does DPack present an efficiency improvement for plausible workloads? How much does

it trade fairness? Fig. 2.6a shows the number of allocated tasks as a function of the number of

29

https://github.com/columbia/alibaba-dp-workload


0

5k

10k

15k

20k

25k

20k 40k 60k 80k

n
u

m
b

e
r 

o
f 
a

ll
o
c
a
te

d
 t
a

s
k
s

number of submitted tasks

DPack

DPF

FCFS

(a) Allocated tasks as a function of submitted
tasks

0

5k

10k

15k

20k

25k

 30  60  90  120  150  180

n
u

m
b

e
r 

o
f 
a

ll
o
c
a
te

d
 t
a

s
k
s

number of available blocks

DPack

DPF

FCFS

(b) Allocated tasks as a function of number of
available blocks

Fig. 2.6: (Q3) Efficiency evaluation on the online Alibaba-DP workload. Number of allocated tasks as
a function of (a) offered load for 90 blocks and (b) available blocks for 60k tasks. Q3 Answer: Alibaba-DP
exhibits sufficient heterogeneity for DPack to present a significant improvement (1.3–1.7×) over DPF.

submitted ones from the Alibaba-DP workload. The results show that as the number of submitted

tasks increases, both DPF and DPack can allocate more tasks, because they have a larger pool

of low-demand submitted tasks to choose from. This is not the case with FCFS, which does not

prioritize low-demand tasks. DPack allocates 22–43% more tasks than DPF, since it packs the

tasks more efficiently. Similarly, Fig. 2.6b shows the number of allocated tasks as a function

of the number of available blocks. As expected, all algorithms can schedule more tasks when

they have more available budget. DPack consistently outperforms DPF, scheduling 30–71% more

tasks. Across all the configurations evaluated in Fig. 2.6a and 2.6b, DPack outperforms DPF by

1.3–1.7×. The results confirm that Alibaba-DP, a workload derived objectively from a real trace,

exhibits sufficient heterogeneity for DPack to show significant benefit.

Efficiency–Fairness Trade-off. While DPack schedules significantly more tasks than DPF on

the Alibaba workload, this increased efficiency comes at the cost of fairness, when we use DPF’s

definition of fairness. To demonstrate this, we run the Alibaba workload with 90 blocks and 60k

tasks, and set the DPF “fair share” of tasks to be 1
50 . This means that DPF will always prioritize

tasks that request 1
50 or less of the epsilon-normalized global budget. In the Alibaba trace, using

this definition, 41% of tasks would qualify as demanding less or equal budget than their fair share.

30



0

5k

10k

15k

 250  500  750  1000  1250  1500

n
u

m
b

e
r 

o
f 
a

llo
c
a
te

d
 t
a

s
k
s

mean tasks per block

DPack
DPF
FCFS

(a) Original workload

0

500k

1M

 250  500  750  1000  1250  1500

s
u

m
 o

f 
w

e
ig

h
ts

 f
o

r 
a

llo
c
a

te
d

mean tasks per block

DPack
DPF
FCFS

(b) Workload with task weights

Fig. 2.7: Evaluation on Amazon Reviews workload from [8]. (a) The original synthetic workload ex-
hibits limited heterogeneity, so there is no room for DPack to improve over DPF. (b) Adding randomly
selected weights to the tasks creates sufficient heterogeneity for DPack to show an improvement. Global
efficiency is measured as the sum of weights of allocated tasks (y axis).

With DPack, 60% of the allocated tasks are fair-share tasks; with DPF 90% are. However, DPack

can allocate 45% more tasks than DPF. As expected, this shows that optimizing for efficiency

comes at the expense of fairness. In the case of privacy scheduling, however, due to the finite

nature of the privacy budget, DPF’s fairness guarantees are limited only to the first 𝑁 fair share

tasks (in the experiment, 𝑁 = 50); the guarantees do not hold for later-arriving tasks. This makes

the overall notion of fairness as defined by DPF somewhat arbitrary and underscores the merit of

efficiency-oriented algorithms.

Another workload: Amazon Reviews [8]. We also evaluate on the macrobenchmark workload

from the PrivateKube paper [8], which consists of several DP models trained on the Amazon Re-

views dataset [44]. Unlike our Alibaba-DP, which is rooted in a real ML workload trace, this

workload is completely synthetic and very small, and as a result, its characteristics may be very

different from real workloads. Yet, for completeness, we evaluate it here, too. The workload con-

sists two categories of tasks: 24 tasks to train neural networks with a composition of subsampled

Gaussians, and 18 tasks to compute summary statistics with Laplace mechanisms. Unlike for our

Alibaba-DP workload, task arrival needs to be configured for this workload; tasks arrive with a

Poisson process and request the latest blocks. The Amazon Reviews workload has low hetero-

31



Scheduler Number of allocated tasks
DPack 1269
DPF 1100

Tab. 2.2: Efficiency on Kubernetes prototype with Alibaba-DP.

geneity both in terms of block and the best-alpha variance. Although tasks request up to 50 blocks,

95% of the tasks in this workload request 5 blocks or fewer, and 63% of the tasks request only 1

block. Moreover, tasks have only 2 possible best alphas (4 or 5), with 81% of the tasks with a best

alpha of 5. Hence, per our Q1 results in §2.7.2, we expect DPF to already perform well and leave

no room for improvement for DPack. Fig. 2.7a confirms this: all schedulers perform largely the

same on this workload.

Next, without modifying the privacy budget or the blocks they request, we configure different

weights for submitted tasks, corresponding to different profits the company might get if a task gets

to run. We assume that large tasks (neural networks) are more important than small tasks. Then,

we pick an arbitrary grid of weights while still allowing some small tasks to be more profitable

than some large tasks. Weights are chosen uniformly at random from {10, 50, 100, 500} for large

tasks and {1, 5, 10, 50} for small tasks. This change implicitly scales the number of requested

blocks and increases heterogeneity. In terms of global efficiency, a task with weight 𝑘 demanding

𝑚 blocks is roughly similar to a task with weight 1 demanding 𝑚/𝑘 blocks. Instead of having

most tasks request 1 block, tasks now demand a higher-variance weighted number of blocks (the

variation coefficient is 1.9 instead of 1.3). Fig. 2.7b shows the global efficiency, measured as the

sum of weights of allocated tasks, as a function of the number of submitted tasks. Recall that we

also incorporate task weights in DPF (§2.4.1). Still, DPack now outperforms DPF by 9–50%.

2.7.4 Kubernetes Implementation Evaluation (Q4)

Q4: How does our implementation perform in a realistic setting? We evaluate the Alibaba-DP

workload on our Kubernetes system. Scheduler runtime: We first estimate the scheduler’s over-

head by emulating an offline scenario, where all the tasks and blocks are available. To do so, we

32



 0

 20

 40

 60

 80

 100

 2000  3000  4000

s
c
h

e
d

u
le

r 
ru

n
ti
m

e
 (

s
)

number of submitted tasks

DPack
DPF

(a) Scheduler runtime as a function of submit-
ted tasks in the offline experiment (𝑇 = 25).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4

fr
a

c
ti
o
n
 o

f 
a
llo

c
a
te

d
 t
a

s
k
s

scheduling delay (virtual time)

DPack
DPF

(b) CDF of scheduling delay (excluding sched-
uler runtime) for allocated tasks in the online
experiment (𝑇 = 5).

Fig. 2.8: (Q4) Evaluation on Kubernetes with Alibaba-DP. DPack has only a modestly higher runtime
than DPF, as system-related overheads dominate. In the online setting, scheduling delays are nearly identical
across schedulers.

use a large 𝑇 = 25. For this experiment, we generate a total of 4,190 tasks by sampling 2 days

of the Alibaba cluster trace. The experiment shows the runtime as a function of the number of

submitted tasks. It uses 10 offline and 20 online blocks. Fig. 2.8a shows the total time spent in

the scheduling procedure, which includes Kubernetes-related overheads (e.g. inter-process com-

munication and synchronization). As noted in §2.5a, DPack has a higher overhead since it solves

knapsack subproblems. DPack has a higher runtime overhead than DPF since it has to recompute

the efficiency of each task when the global state changes after a scheduling cycle, while DPF com-

putes the dominant share of each task only once. Nevertheless, the overhead is modest, because:

(a) the Kubernetes overheads dominate, and (b) the DPack (and DPF) algorithms are parallelized.

In addition, since DP tasks are often long-running (e.g. distributed training of deep neural net-

works), the scheduling delay of DPack in many cases is insignificant compared to the total task

completion time.

Scheduling delays and efficiency: We run an experiment to measure the scheduling delays

(Fig. 2.8b) and efficiency (Table 2.2) in an online scenario on Kubernetes. We use the same work-

load and number of blocks as in Fig. 2.8a, with 𝑇 = 5. As before, DPack is more efficient than

DPF. Scheduling delay, measured in virtual time, excluding scheduler runtime, shows no signifi-

33



cant difference between the two policies.

2.8 Related Work

We have already covered the details of the most closely related works: DPF and related sys-

tems for privacy scheduling [9, 8, 10] (background in §2.3.3, efficiency limitations in §2.4.1 and

§2.4.2, and experimental evaluation in §5.6). To summarize, we adopt the same threat and system

models, but instead of focusing on fairness, we focus on efficiency because we believe that the

biggest pressure in globally-DP ML systems will ultimately be how to fit as many models as pos-

sible under a meaningful privacy guarantee. The authors of Cohere [10] concurrently developed

a privacy management system with novel partitioning and accounting features. They also investi-

gate efficiency-oriented privacy resource allocation, but they rely on an ILP solver for scheduling,

which is similar to our Optimal baseline (§2.7.1). Their optimal solver faces the same scalability

issues we identified, unless tasks query non-overlapping block ranges, thus reducing the number of

constraints in the privacy knapsack. Cohere supports DPack as an approximate scheduler, and the

authors observe that “the DPK heuristic2 achieves within 96% and 98% of optimal request volume

and utility, respectively” on their workload. This further validates DPack.

Bin packing for data-intensive tasks. Multidimensional knapsack and bin packing are classic

NP-hard problems [45, 46, 47]. In recent years, several heuristics for these problems have been

proposed to increase resource utilization in big data and ML clusters [16, 11, 48, 49]. Some of these

heuristics assign a weight to each dimension and reduce to a scalar problem with a dot product [31,

33]. We show that the Rényi formulation of differential privacy generates a new variation of the

multidimensional knapsack problem, making standard approximations and heuristics unsuitable.

Scheduling trade-offs. Fairness and performance is a classic tradeoff in scheduling even in single-

resource scenarios. Shortest-remaining-time-first (SRTF) is optimal for minimizing the average

completion time, but it can be unfair to long-running tasks and cause starvation. Recent works

have shown a similar fairness and efficiency tradeoff in the multi-resource setting [11]. Although

2DPack was known as DPK in a previous preprint of our paper.

34



max-min fairness can provide both fairness and efficiency for a single resource, its extension to

multi-resource fairness [50] can have arbitrarily low efficiency in the worst case [12]. In this

paper, we highlight the fairness-efficiency tradeoff when allocating privacy blocks among multiple

tasks with RDP.

Differential privacy. The literature on DP algorithms is extensive, including theory for most

popular ML algorithms (e.g. SGD [42, 51], federated learning [52]) and statistics (e.g. contingency

tables [53], histograms [54]), and their open source implementations [55, 56, 57, 25, 26]. These

lower-level algorithms run as tasks in our workloads. Some algorithms focus on workloads [58],

including on a data streams [59], but they remain limited to linear queries. Some DP systems

also exist, but most do not handle ML workloads, instead providing DP SQL-like [60, 61, 29] and

MapReduce interfaces [62], or support for summary statistics [63]. Sage [9], PrivateKube [8] and

Cohere [10], previously discussed, handle ML workloads.

2.9 Conclusions

This paper for the first time explores how data privacy should be scheduled efficiently as a

computing resource. It formulates the scheduling problem as a new type of multidimensional

knapsack optimization, and proposes and evaluates an approximate algorithm, DPack, that is able

to schedule significantly more tasks than the state-of-the-art. By taking the first step of building an

efficient scheduler for DP, we believe this work builds a foundation for tackling several important

open challenges for managing access to DP in real-world settings, such as supporting tasks with

different utility functions, investigating job-level scheduling, and better scheduling of traditional

computing resources alongside privacy blocks.

35



Chapter 3: Turbo: Effective Caching for Differentially-Private Databases

3.1 Overview

Differentially-private (DP) databases allow for privacy-preserving analytics over sensitive datasets

or data streams. In these systems, user privacy is a limited resource that must be conserved with

each query. We propose Turbo, a novel, state-of-the-art caching layer for linear query workloads

over DP databases. Turbo builds upon private multiplicative weights (PMW), a DP mechanism that

is powerful in theory but ineffective in practice, and transforms it into a highly-effective caching

mechanism, PMW-Bypass, that uses prior query results obtained through an external DP mech-

anism to train a PMW to answer arbitrary future linear queries accurately and “for free” from a

privacy perspective. Our experiments on public Covid and CitiBike datasets show that Turbo with

PMW-Bypass conserves 1.7 − 15.9× more budget compared to vanilla PMW and simpler cache

designs, a significant improvement. Moreover, Turbo provides support for range query workloads,

such as timeseries or streams, where opportunities exist to further conserve privacy budget through

DP parallel composition and warm-starting of PMW state. Our work provides a theoretical foun-

dation and general system design for effective caching in DP databases.

3.2 Introduction

ABC collects lots of user data from its digital products to analyze trends, improve existing

products, and develop new ones. To protect user privacy, the company uses a restricted interface

that removes personally identifiable information and only allows queries over aggregated data from

multiple users. Internal analysts use interactive tools like Tableau to examine static datasets and

run jobs to calculate aggregate metrics over data streams. Some of these metrics are shared with

external partners for product integrations. However, due to data reconstruction attacks on similar

36



“anonymized” and “aggregated” data from other sources, including the US Census Bureau [64]

and Aircloak [65], the CEO has decided to pause external aggregate releases and severely limit the

number of analysts with access to user data statistics until the company can find a more rigorous

privacy solution.

The preceding scenario, while fictitious, is representative of what often occurs in industry and

government, leading to obstacles to data analysis or incomplete privacy solutions. In 2007, Netflix

withdrew “anonymized” movie rating data and canceled a competition due to de-anonymization

attacks [66]. In 2008, genotyping aggregate information from a clinical study led to the revelation

of participants’ membership in the diagnosed group, prompting the National Institutes of Health

to advise against the public release of statistics from clinical studies [67]. In 2021, New York City

excluded demographic information from datasets released from their CitiBike bike rental service,

which could reveal sensitive user data [68]. The city’s new, more restrained data release not only

remains susceptible to privacy attacks but also prevents analyses of how demographic groups use

the service.

Differential privacy (DP) provides a rigorous solution to the problem of protecting user privacy

while analyzing and sharing statistical aggregates over a database. DP guarantees that analysts

cannot confidently learn anything about any individual in the database that they could not learn

if the individual were not in the database. Industry and government have started to deploy DP

for various use cases [69], including publishing trends in Google searches related to Covid [70],

sharing LinkedIn user engagement statistics with outside marketers [71], enabling analyst access

to Uber mobility data while protecting against insider attacks [72], and releasing the US Census’

2020 redistricting data [73]. To facilitate the application of DP, industry has developed a suite of

systems, ranging from specialized designs like the US Census TopDown [73] and LinkedIn Audi-

ence Engagements [71] to more general DP SQL systems, like GoogleDP [29], Uber Chorus [72],

and Tumult Analytics [30].

DP systems face a significant challenge that hinders their wider adoption: they struggle to han-

dle large workloads of queries while maintaining a reasonable privacy guarantee. This is known as

37



the “running out of privacy budget” problem and affects any system, whether DP or not, that aims

to release multiple statistics from a sensitive dataset. A seminal paper by Dinur and Nissim [74]

proved that releasing too many accurate linear statistics from a dataset fundamentally enables its

reconstruction, setting a lower bound on the necessary error in queries to prevent such reconstruc-

tion. Successful reconstructions of the US Census 2010 data [64] and Aircloak’s data [65] from the

aggregate statistics released by these entities exemplify this fundamental limitation. DP, while not

immune to this limitation, provides a means of bounding the reconstruction risk. DP randomizes

the output of a query to limit the influence of individual entries in the dataset on the result. Each

new DP query increases this limit, consuming part of a global privacy budget that must not be

exceeded, lest individual entries become vulnerable to reconstruction.

Recent work proposed treating the global privacy budget as a system resource that must be man-

aged and conserved, similar to traditional resources like CPU [8]. When computation is expensive,

caching is a go-to solution: it uses past results to save CPU on future computations. Caches are

ubiquitous in all computing systems – from the processor to operating systems and databases –

enabling scaling to much larger workloads than would otherwise be afforded with fixed resources.

In this paper, we thus ask: How should caching work in DP systems to significantly increase the

number of queries they can support under a privacy guarantee? While DP theory has explored

algorithms to reuse past query results to save privacy budget in future queries, there is no general

DP caching system that is effective in common practical settings.

We propose Turbo, the first general and effective caching layer for DP SQL databases that

boosts the number of linear queries (such as sums, averages, counts) that can be answered accu-

rately under a fixed, global DP guarantee. In addition to incorporating a traditional exact-match

cache that saves past DP query results and reuses them if the same query reappears, Turbo builds

upon a powerful theoretical construct, known as private multiplicative weights (PMW) [75], that

leverages past DP query results to learn a histogram representation of the dataset that can go on

to answer arbitrary future linear queries for free once it has converged. While PMW has com-

pelling convergence guarantees in theory, we find it ineffective in practice, being overrun even by

38



an exact-match cache.

We make three main contributions to PMW design to boost its effectiveness and applicability.

First, we develop PMW-Bypass, a variant of PMW that bypasses it during the privacy-expensive

learning phase of its histogram, and switches to it once it has converged to reap its free-query

benefits. This change requires a new mechanism for updating the histogram despite bypassing the

PMW, plus new theory to justify its convergence. The PMW-Bypass technique is highly effective,

significantly outperforming both the exact-match cache and vanilla PMW in the number of queries

it can support. Second, we optimize our mechanisms for workloads of range queries that do not

access the entire database. These types of queries are typical in timeseries databases and data

streams. For such workloads, we organize the cache as a tree of multiple PMW-Bypass objects and

demonstrate that this approach outperforms alternative designs. Third, for streaming workloads,

we develop warm-starting procedures for tree-structured PMW-Bypass histograms, resulting in

faster convergence.

We formally analyze each of our techniques, focusing on privacy, per-query accuracy, and con-

vergence speed. Each technique represents a contribution on its own and can be used separately, or,

as we do in Turbo, as part of the first general, effective, and accurate DP-SQL caching design. We

prototype Turbo on TimescaleDB, a timeseries database, and use Redis to store caching state. We

evaluate Turbo on workloads based on Covid and CitiBike datasets. We show that Turbo signifi-

cantly improves the number of linear queries that can be answered with less than 5% error (w.h.p.)

under a global (10, 0)-DP guarantee, compared to not having a cache and alternative cache designs.

Our approach outperforms the best-performing baseline in each workload by 1.7 to 15.9 times, and

even more significantly compared to vanilla PMW and systems with no cache at all (such as most

existing DP systems). These results demonstrate that our Turbo cache design is both general and

effective in boosting workloads in DP SQL databases and streams, making it a promising solution

for companies like ABC that seek an effective DP SQL system to address their user data analy-

sis and sharing concerns. We make Turbo available open-source at https://github.com/

columbia/turbo, part of a broader set of infrastructure systems we are developing for DP, all

39

https://github.com/columbia/turbo
https://github.com/columbia/turbo


described here: https://systems.cs.columbia.edu/dp-infrastructure/.

3.3 Background

Threat model. We consider a threat model known as centralized differential privacy: one or

more untrusted analysts query a dataset or stream through a restricted, aggregate-only interface

implemented by a trusted database engine of which Turbo is a trusted component. The goal of the

database and Turbo is to provide accurate answers to the analysts’ queries without compromising

the privacy of individual users in the database. The two main adversarial goals that an analyst may

have are membership inference and data reconstruction. Membership inference is when the adver-

sary wants to determine whether a known data point is present in the dataset. Data reconstruction

involves reconstructing unknown data points from a known subset of the dataset. To achieve their

goals, the adversary can use composition attacks to single out contributions from individuals, col-

lude with other analysts to coordinate their queries, link anonymized records to public datasets,

and access arbitrary auxiliary information except for timing side-channel information. Previous

research demonstrated attacks under this threat model [66, 76, 77, 65, 64, 20].

Differential privacy (DP). DP [7] randomizes aggregate queries over a dataset to prevent mem-

bership inference and data reconstruction [78, 79]. DP randomization (a.k.a. noise) ensures that

the probability of observing a specific result is stable to a change in one datapoint (e.g., if user 𝑥 is

removed or replaced in the dataset, the distribution over results remains similar). More formally,

a query 𝑄 is (𝜖, 𝛿)-DP if, for any two datasets 𝐷 and 𝐷′ that differ by one datapoint, and for any

result subset 𝑆 we have: P(𝑄(𝐷) ∈ 𝑆) ≤ 𝑒𝜖P(𝑄(𝐷′) ∈ 𝑆) + 𝛿. 𝜖 quantifies the privacy loss due to

releasing the DP query’s result (higher means less privacy), while 𝛿 can be interpreted as a failure

probability and is set to a small value.

Two common mechanisms to enforce DP are the Laplace and Gaussian mechanisms. They

add noise from an appropriately scaled Laplace/Gaussian distribution to the true query result, and

return the noisy result. As an example, for counting queries and a database of size 𝑛, adding noise

from Laplace(0, 1/𝑛𝜖), ensures (𝜖, 0)-DP (a.k.a. pure DP); adding noise from Gaussian(0,
√︁

2 ln(1.25/𝛿)/𝑛𝜖)

40

https://systems.cs.columbia.edu/dp-infrastructure/


ensures (𝜖, 𝛿)-DP. The accuracy for such queries can be controlled probabilistically by converting

it into the (𝜖, 𝛿) parameters.

Answering multiple queries on the same data fundamentally degrades privacy [74]. DP quan-

tifies this over a sequence of DP queries using the composition property, which in its basic form

states that releasing two (𝜖1, 𝛿1)-DP and (𝜖2, 𝛿2)-DP queries is (𝜖1 + 𝜖2, 𝛿1 + 𝛿2)-DP. When queries

access disjoint data subsets, their composition is (max(𝜖1, 𝜖2),max(𝛿1, 𝛿2))-DP and is called par-

allel composition. Using composition, one can enforce a global (𝜖𝐺 , 𝛿𝐺)-DP guarantee over a

workload, with each DP query “consuming” part of a global privacy budget that is defined upfront

as a system parameter [35].

Good values of the global privacy budget in interactive DP SQL systems remain subject for

debate [80], but generally, an ideal value for strong theoretical guarantees is 𝜖𝐺 = 0.1, while

𝜖𝐺 = 1 are considered acceptable. Larger values are often considered vacuous semantically, since

individuals’ privacy risk grows with 𝑒𝜖𝐺 . In this paper, we aim to achieve values of 𝜖𝐺 = 1 or

smaller over a query workload.

Private multiplicative weights (PMW). PMW is a DP mechanism to answer online linear queries

with bounded error [75]. We defer detailed description of PMW, plus an example illustrating its

functioning, to §3.5 and only give here an overview. PMW maintains an approximation of the

dataset in the form of a histogram: estimated counts of how many times any possible data point

appears in the dataset. When a query arrives, PMW estimates an answer using the histogram and

computes the error of this estimate against the real data in a DP way, using a DP mechanism called

sparse vector (SV) [81] (described shortly). If the estimate’s error is low, it is returned to the ana-

lyst, consuming no privacy budget (i.e., the query is answered “for free”). If the estimate’s error is

large, then PMW executes the DP query on the data with the Laplace/Gaussian mechanism, con-

suming privacy budget as needed. It returns the DP result and also uses it to update the histogram

for more accurate estimates to future queries.

An additional cost in using PMW comes from the SV, a well-known DP mechanism that can be

used to test the error of a sequence of query estimates against the ground truth with DP guarantees

41



and limited privacy budget consumption [81]. We refer the reader to textbook descriptions of SV

for detailed functioning [81] and provide here only an overview of its semantics. SV is a stateful

mechanism that receives queries and estimates for their results one by one, and assesses the error

between these estimates and the ground-truth query results. While the estimates have error below a

preset threshold with high probability, SV returns success and consumes zero privacy. However, as

soon as SV detects a large-error estimate, it requires a reset, which is a privacy-expensive operation

that re-initializes state within the SV to continue the assessments. In common SV implementations,

a reset costs as much as 3× the privacy budget of executing one DP query on the data.

The theoretical vision of PMW is as follows. Under a stream of queries, PMW first goes

through a “training” phase, where its histogram is inaccurate, requiring frequent SV resets and

consuming budget. Failed estimation attempts update the histogram with low-error results ob-

tained by running the DP query. Once the histogram becomes sufficiently accurate, the SV tests

consistently pass, thereby ameliorating the initial training cost. Theoretical analyses provide a

compelling worst-case convergence guarantee for the histogram, determining a worst-case number

of updates required to train a histogram that can answer any future linear query with low error [58].

However, no one has examined whether this worst-case bound is practical and if PMW outperforms

natural baselines, such as an exact-match cache.

3.4 Turbo Overview

Turbo is a caching layer that can be integrated into a DP SQL engine, significantly increasing

the number of linear queries that can be executed under a fixed, global (𝜖𝐺 , 𝛿𝐺)-DP guarantee. We

focus on linear queries like sums, averages, and counts (defined in §3.5), which are widely used in

interactive analytics and constitute the class of queries supported by approximate databases such

as BlinkDB [82]. These queries enable powerful forms of caching like PMW, and also allow for

accuracy guarantees, which are important when doing approximate analytics, as one does on a DP

database.

42



3.4.1 Design Goals

In designing Turbo, we were guided by several goals:

(G1) Guarantee privacy: Turbo must satisfy (𝜖𝐺 , 𝛿𝐺)-DP.

(G2) Guarantee accuracy: Turbo must ensure (𝛼, 𝛽)-accuracy for each query, defined for 𝛼 > 0,

𝛽 ∈ (0, 1) as follows: if 𝑅′ and 𝑅 are the returned and true results, then |𝑅′ − 𝑅 | ≤ 𝛼 with

(1 − 𝛽) probability. If 𝛽 is small, a result is 𝛼-accurate w.h.p. (with high probability).

(G3) / (G4) Provide worst-case convergence guarantees but optimize for empirical convergence: We aim

to maintain PMW’s theoretical convergence (G3), but we prioritize for empirical convergence

speed, a new metric that measures, on a workload, the number of updates needed to answer

most queries for free (G4).

(G5) Improve privacy budget consumption: We aim for significant improvements in privacy budget

consumption compared to both not having a cache and having an exact-match cache or a vanilla

PMW.

(G6) Support multiple use cases: Turbo should benefit multiple important workload types, including

static and streaming databases, and queries that arrive over time.

(G7) Easy to configure: Turbo should include few knobs with fairly stable performance.

(G1) and (G2) are strict requirements. (G3) and (G4) are driven by our belief that DP systems

should not only possess meaningful theoretical properties but also be optimized for practice. (G5)

is our main objective. (G6) requires further attention, given shortly. (G7) is driven by the limited

guidance from PMW literature on parameter tuning. PMW meets goals (G1-G3) but falls signifi-

cantly short for (G4-G7). Turbo achieves all goals; we provide theoretical analyses for (G1-G3) in

§3.5 and empirical evaluations for (G4-G7) in §5.6.

43



3.4.2 Use Cases

The DP literature is fragmented, with different algorithms developed for different use cases.

We seek to create a general system that supports multiple settings, highlighting three here:

(1) Non-partitioned databases are the most common use case in DP. A group of untrusted analysts

issue queries over time against a static database, and the database owner wishes to enforce a global

DP guarantee. Turbo should allow a larger workload of queries compared to existing approaches.

(2) and (3) Partitioned databases are less frequently investigated in DP theory literature, but

important to distinguish in practice [83, 84]. When queries tend to access different data ranges,

it is worth partitioning the data and accounting for consumed privacy budget in each partition

separately through DP’s parallel composition. This lowers privacy budget consumption in each

partition and permits more non- or partially-overlapping queries against the database. This kind

of workload is inherent in timeseries and streaming databases, where analysts typically query the

data by windows of time, such as how many new Covid cases occurred in the week after a certain

event, or what is the average age of positive people over the past week. We distinguish two cases:

(2) Partitioned static database, where the database is static and partitioned by an attribute that

tends to be accessed in ranges, such as time, age, or geo-location. All partitions are available at the

beginning. Queries arrive over time and most are assumed to run on some range of interest, which

can involve one or more partitions. Turbo should provide significant benefit not only compared to

the baseline caching techniques, but also compared to not having partitioning.

(3) Partitioned streaming database, where the database is partitioned by time and partitions

arrive over time. In such workloads, queries tend to run continuously as new data becomes avail-

able. Hence, new partitions see a similar query workload as preceding partitions. Turbo should

take advantage of this similarity to further conserve privacy.

For all three use cases, we aim to support online workloads of queries that are not all known

upfront. As §4.8 reviews, most works on optimizing global privacy budget consumption operate

in the offline setting, where all queries are known upfront. For that setting, algorithms are known

44



to answer all queries simultaneously with optimal use of privacy budget. However, this setting

is unrealistic for real use cases, where analysts adapt their queries based on previous results, or

issue new queries for different analyses. In such cases, which correspond to the online setting, we

require adaptive algorithms that accurately answer queries on-the-fly. Turbo does this by making

effective use of PMW, as we next describe.

3.4.3 Turbo Architecture

Fu4.3 shows the Turbo architecture. It is a caching layer that can be added to a DP SQL engine,

like GoogleDP [29], Uber Chorus [72], or Tumult Analytics [30], to boost the number of linear

queries that can be answered accurately under a fixed global DP guarantee. The filled components

indicate our additions to the DP SQL engine, while the transparent components are standard in DP

SQL engines. Here is how a typical DP SQL engine works without Turbo. Analysts issue queries

against the engine, which is trusted to enforce a global (𝜖𝐺 , 𝛿𝐺)-DP guarantee. The engine executes

the queries using a DP query executor, which adds noise to query results with the Laplace/Gaussian

mechanism and consumes a part of the global privacy budget. A budget accountant tracks the

consumed budget; when it runs out, the DP SQL engine either stops responding to new queries (as

do Chorus and Tumult Analytics) or sacrifices privacy by “resetting” the budget (as does LinkedIn

Audience Insights). We assume the former.

Turbo intercepts the queries before they go into the DP query executor and performs a very

proactive form of caching for them, reusing prior results as much as possible to avoid consuming

privacy budget for new queries. Turbo’s architecture is organized in two types of components:

caching objects (denoted in light-orange background in Fig. 4.3) and functional components that

act upon them (denoted in grey background).

Caching objects. Turbo maintains several types of caching objects. First, the Exact-Cache stores

previous queries and their DP results, allowing for direct retrieval of the result without consuming

any privacy budget when the same query is seen again on the same database version. Second, the

PMW-Bypass is an improved version of PMW that reduces privacy budget consumption during the

45



Turbo

Query Parser

no
n-

lin
ea

r q
ue

ry
? 

Tu
rb

o 
ca

n’
t h

el
p.

linear query?
pass it through Turbo.

D
P 

Pr
iv

ac
y 

A
cc

ou
nt

an
t (

st
op

s 
w

he
n 

(ε
G
, δ

G
) r

ea
ch

ed
)

fresh-noise result

subquery true result

result (α-accurate 
with 1-β prob.)

DP SQL Engine (trusted)
ーenforces (εG, δG)-DP, e.g., GoogleDP, Chorus, Tumult

Data Analyst 
(untrusted)

query result

DBMS (trusted)

ーstatic or streaming, e.g., PostgreSQL or TimescaleDB
ーoptionally partitioned  (e.g., by timestamp,  age, …)

   
   

  c
om

bi
ne

 re
su

lts

Exact-Cache Tree

calibrate (ε, δ) for (α, β)

subquery, (ε, δ)

DP Query Executor
                    ーe.g., Laplace or Gaussian mechanism           

cached 
result, 
if anypay for 

privacy 
budget  
used

histogram-
based 
result

or

w
ar

m
-s

ta
rt

 h
is

to
gr

am
s

up
da

te
 h

is
to

gr
am

s 
an

d 
Ex

ac
t-C

ac
he

s

         1                    2                     3                   4                 ….

split query

subqueries

pay (ε, δ)

Q1, α1  DP result CR1
Q2, α2  DP result CR2
   …            …

Exact-Cache
[1,1]

PMW-Bypass Tree

PMW-Bypass
[1,1]

not cached or not 
accurate enough

Fig. 3.1: Turbo architecture.46



training phase of its histogram (§3.5.3). Given a query, PMW-Bypass uses an effective heuristic to

judge whether the histogram is sufficiently trained to answer the query accurately; if so, it uses it,

thereby spending no budget. Critically, PMW-Bypass includes a mechanism to externally update

the histogram even when bypassing it, to continue training it for future, free-budget queries.

Turbo aims to enable parallel composition for workloads that benefit from it, such as time-

series or streaming workloads, by supporting database partitioning. In theory, partitions could be

defined by attributes with public values that are typically queried by range, such as time, age, or

geo-location. In this paper, we will focus on partitioning by time. Turbo uses a tree-structured

PMW-Bypass caching object, consisting of multiple histograms organized in a binary tree, to sup-

port linear range queries over these partitions effectively (§3.5.4). This approach conserves more

privacy budget and enables larger workloads to be run when queries access only subsets of the

partitions, compared to alternative methods.

Functional components. When Turbo receives a linear query through the DP SQL engine’s query

parser, it applies its caching objects to the query. If the database is partitioned, Turbo splits the

query into multiple sub-queries based on the available tree-structured caching objects. Each sub-

query is first passed through an Exact-Cache, and if the result is not found, it is forwarded to a

PMW-Bypass, which selects whether to execute it on the histogram or through direct Laplace/-

Gaussian. For sub-queries that can leverage histograms, the answer is supplied directly without

execution or budget consumption. For sub-queries that require execution with Laplace/Gaussian,

the (𝜖, 𝛿) parameters for the mechanism are computed based on the (𝛼, 𝛽) accuracy parameters,

using the “calibrate (𝜖, 𝛿) for (𝛼, 𝛽)” functional component in Fig. 4.3. Then, each sub-query and

its privacy parameters are passed to the DP query executor for execution.

Turbo combines all sub-query results obtained from the caching objects to form the final result,

ensuring that it is within 𝛼 of the true result with probability 1−𝛽 (functional component “combine

results”). New results computed with fresh noise are used to update the caching objects (func-

tional component “update histograms and Exact-Caches”). Additionally, Turbo includes cache

management functionality, such as “warm-start of histograms,” which reuses trained histograms

47



from previous partitions to warm-start new histograms when a new partition is created (§3.5.5).

This mechanism is effective in streams where the data’s distribution and query workload are stable

across neighboring partitions. Theoretical and experimental analyses show that external histogram

updates and warm-starting give convergence properties similar to, but slightly slower than, vanilla

PMW.

3.5 Detailed Design

We next detail the novel caching objects and mechanisms in Turbo, using different use cases

from §3.4.2 to illustrate each concept. We describe PMW-Bypass in the static, non-partitioned

database, then introduce partitioning for the tree-structured PMW-Bypass, followed by the addition

of streaming to discuss warm-start procedures. We focus on the Laplace mechanism and basic

composition, thus only discussing pure (𝜖, 0)-DP and ignoring 𝛿. We also assume 𝛽 is small

enough for Turbo results to count as 𝛼-accurate w.h.p.

3.5.1 Notation

Our algorithms require some notation. Given a data domain X, a database 𝑥 with 𝑛 rows can be

represented as a histogram ℎ ∈ NX as follows: for any data point 𝑣 ∈ X, ℎ(𝑣) denotes the number

of rows in 𝑥 whose value is 𝑣. ℎ(𝑣) is the bin corresponding to value 𝑣 in the histogram. We denote

𝑁 = |X| the size of the data domain and 𝑛 the size of the database. When X has the form {0, 1}𝑑 ,

we call 𝑑 the data domain dimension. Example: a database with 3 binary attributes has domain

X = {0, 1}3 of dimension 𝑑 = 3 and size 𝑁 = 8; ℎ(0, 0, 1) is the number of rows that are equal to

(0, 0, 1). §4.3.1 exemplifies a database, its dimensions, and its histogram.

We define linear queries as SQL queries that can be transformed or broken into the following

form:

SELECT AVG(*) FROM ( SELECT q(A, B, C, ...) FROM Table ),

where q takes 𝑑 arguments (one for each attribute of Table, denoted 𝐴, 𝐵, 𝐶, ...) and outputs

a value in [0, 1]. When q has values in {0, 1}, a query returns the fraction of rows satisfying

48



Time (T) Positive (P) Age Bracket (A)

02/01/21 0 0 (1-17)

02/01/21 1 1 (18-49)

02/02/21 1 2 (50-64)

02/02/21 1 3 (65+)

… say n=100 total rows …

(a) “Covid” table:

(c) Histogram state after executing Q1, then Q2:

(b) Previously executed queries:

Q1: SELECT COUNT(*) FROM Covid 
         WHERE Positive=1

Q2: SELECT COUNT(*) FROM Covid
         WHERE AgeBracket=0

Format:  h(p,a): default-bin-value->value-after-Q1->value-after-Q2 (current value)
                  real: real value of the histogram bin (no DP, included as reference for h(v))
                     c: number of purposeful updates to the histogram bin

A = 0 A = 1 A = 2 A = 3

P = 0 h(0,0): 12.5->18.3->8
(real: 13)         c: 1

h(0,1): 12.5->18.3->21.7
(real: 27)             c: 0

h(0,2): 12.5->18.3->21.7
(real: 15)             c: 0

h(0,3): 12.5->18.3->21.7
(real: 25)               c: 0

P = 1 h(1,0): 12.5->6.7->2.9
(real: 3)           c: 2

h(1,1): 12.5->6.7->8
(real: 5)               c: 1

h(1,2): 12.5->6.7->8
(real: 8)               c: 1

h(1,3): 12.5->6.7->8
(real: 4)                 c: 1

(d) Next query to execute:
Q3: SELECT COUNT(*) FROM Covid WHERE Positive=1 AND AgeBracket=0

Fig. 3.2: Running example. (a) Simplified Covid tests dataset with 𝑛 = 100 rows and data domain
size 𝑁 = 8 for the two non-time attributes, test outcome 𝑃 and subject’s age bracket 𝐴. (b) Two
queries that were previously run. (c) State of the histogram as queries are executed. (d) Next query
to run.

predicate q. To get raw counts, we multiply by 𝑛, which we assume is public information. PMW

(and hence Turbo) is designed to support only linear queries. Examples of non-linear queries are:

maximum, minimum, percentiles, top-k.

3.5.2 Running Example

Fig. 3.2 gives a running example inspired by our evaluation Covid dataset. Analysts run queries

against a database consisting of Covid test results over time. Fig. 3.2(a) shows a simplified version

of the database, with only three attributes: the test’s date, T; the outcome, P, which can be 0 or 1

for negative/positive; and subject’s age bracket, A, with one of four values as in the figure. The

49



database could be either static or actively streaming in new test data. Initially, we assume it static

and ignore the T attribute. Our example database has 𝑛 = 100 rows and data domain size 𝑁 = 8

for P and A.

Fig. 3.2(b) shows two queries that were previously executed. While queries in Turbo return

the fraction of entries satisfying a predicate, for simplicity we show raw counts. 𝑄1 requests the

positivity rate and 𝑄2 the fraction of tested minors. Fig. 3.2(c) illustrates the histogram repre-

sentation corresponding to the dataset, as estimated by the PMW algorithm, whose execution we

discuss shortly. Fig. 3.2(d) shows the next query that will be executed, 𝑄3, requesting the fraction

of positive minors. 𝑄3 is not identical to either 𝑄1 or 𝑄2, but it is correlated with both, as it

accesses data that overlaps with both queries. Thus, while neither 𝑄1’s nor 𝑄2’s DP results can be

used to directly answer 𝑄3, intuitively, they both should help. That is the insight that PMW (and

PMW-Bypass) exploits through its query-by-query build-up of a DP histogram representation of

the database that becomes increasingly accurate in bins that are accessed by more queries.

Fig. 3.2(c) shows the state of the histogram after executing 𝑄1 and 𝑄2 but before executing

𝑄3. Each bin in the histogram stores an estimation of the number of rows equal to (𝑝, 𝑎). This

is the ℎ(𝑝, 𝑎) field in the figure, for which we show the sequence of values it has taken following

updates due to 𝑄1 and 𝑄2. Initially, ℎ(𝑝, 𝑎) in all bins is set assuming a uniform distribution

over 𝑃 × 𝐴; in this case the initial value was 𝑛/𝑁 = 12.5. The figure also shows the real (non-

private) count for each bin (denoted real), which is not part of the histogram, but we include it as

a reference. As queries are executed, ℎ(𝑝, 𝑎) values are updated with DP results, depending on

which bins are accessed. 𝑄1 and 𝑄2 have already been executed, and both are assumed to have

resorted to the Laplace mechanism, so they both contributed DP results to specific bins (we specify

the update algorithm later when discussing Alg. 2). 𝑄1 accessed, and hence updated, data in the

𝑃 = 1 bins (the bottom row of the histogram). 𝑄2 did so in the 𝐴 = 0 bins (the left column of

the histogram). Through a renormalization step, t hese queries have also changed the other bins,

though not necessarily in a query-informed way. The 𝑐 variable in each bin shows the number

of queries that have purposely updated that bin. We can see that estimates in the 𝑐 > 0 bins are

50



a bit more accurate compared to those in the 𝑐 = 0 bins. The only bin that has been updated

twice is (𝑃 = 1, 𝐴 = 0), as it lies at the intersection of both queries; that bin has diverged from

its neighboring, singly-updated bins and is getting closer to its true value. (Bin (𝑃 = 1, 𝐴 = 2),

updated only once, is even more accurate purely by chance.)

Our last query, 𝑄3, which accesses (𝑃 = 1, 𝐴 = 0), may be able to leverage its estimation

“for free,” assuming the estimation’s error is within 𝛼 w.h.p. Assessing that the error is within 𝛼

– privately, and without consuming privacy budget if it is – is the purview of the SV mechanism

incorporated in a PMW. The catch is that the SV consumes privacy budget, in copious amounts, if

this test fails. This is what makes vanilla PMW impractical, a problem that we address next.

3.5.3 PMW-Bypass

PMW-Bypass addresses practical inefficiencies of PMW, which we illustrate with simple demon-

stration.

Demo experiment. Using a four-attribute Covid dataset with domain size 128 (so a bit larger

than in our running example), we generate a query pool of over 34K unique queries by taking all

possible combinations of values over the four attributes. From this pool, we sample uniformly

with replacement 35K queries to form a workload; there is therefore some identical repetition of

queries but not much. This workload is not necessarily realistic, but it should be an ideal showcase

for PMW: there are many unique queries relative to the small data domain size (giving the PMW

ample chance to train), and while most queries are unique, they tend to overlap in the data they

touch (giving the PMW ample chance to reuse information from previous queries). We evaluate

the cumulative privacy budget spent as queries are executed, comparing the case where we execute

them through PMW vs. directly with Laplace, with and without an exact-match cache. Fig .3.3

shows the results. As expected for this workload, the PMW works, as it converges after roughly

the first 10K queries and consumes very little budget afterwards. However, before converging,

the PMW consumes enormous budget. In contrast, direct execution through Laplace grows lin-

early, but more slowly compared to PMW’s beginning. The PMW eventually becomes better than

51



 0

 1

 2

 3

 4

0K 10K 20K 30Kc
u
m
u
la
tiv
e

 b
u
d
g
e
t

# of queries

PMW
Laplace

Exact-Cache
PMW-Bypass

Fig. 3.3: Demo experiment.

Laplace, but only after ≈ 27𝐾 queries.

Moreover, if instead of always executing with Laplace, we trivially cached the results in an

exact-match cache for future reuse if the same query reappeared – a rare event in this workload

– then the PMW would never become notably better than this simple baseline! This happens for

a workload that should be ideal for PMW. §5.6 shows that for other workloads, less favorable for

PMW but more realistic, the outcome persists: PMWs underperform even the simplest baselines in

practice.

We propose PMW-Bypass, a re-design for PMWs that releases their power and makes them

very effective. We make multiple changes to PMWs, but the main one involves bypassing the PMW

while it is training (and hence expensive) and instead executing directly with Laplace (which is less

expensive). Importantly, we do this while still updating the histogram with the Laplace results so

that eventually the PMW becomes good enough to switch to it and reap its zero-privacy query

benefits. The PMW-Bypass line in Fig .3.3 shows just how effective this design is in our demo

experiment: PMW-Bypass follows the low, direct-Laplace curve instead the PMW’s up until the

histogram converges, after which it follows the flat shape of PMW’s convergence line. In this

experiment, as well as in others in §5.6, the outcome is the same: our changes make PMWs very

effective. We thus believe that PMW-Bypass should replace PMW in most settings where the latter

is studied, not just in our system’s design.

52



PMW-Bypass

Q update (R2)

histogram

Laplace mechanism

histogram-estimated 
result R1

R1, pay 
nothing

yes

no R2, pay for 
Laplace      
and SV

SV
Is R1 α-accurate 

w.h.p.?

fresh DP result R2 
(α-accurate w.h.p.)

Yes

R3, pay 
just for 
Laplace

external 
update (R3)

fresh DP result R3 
(α-accurate w.h.p.)

No

budget 
calibrated 

for α

Heuristic
Is histogram 

ready for Q,α?

or

or
bypass 
branch

Fig. 3.4: PMW-Bypass. New components over vanilla PMW are in blue/bold.

PMW-Bypass. Fig .3.4 shows the functionality of PMW-Bypass, with the main changes shown in

blue and bold. Without our changes, a vanilla PMW works as follows. Given a query 𝑄, PMW

first estimates its result using the histogram (𝑅1) and then uses the SV protocol to test whether it is

𝛼-accurate w.h.p. The test involves comparing 𝑅1 to the exact result of the query executed on the

database. If a noisy version of the absolute error between the two is within a threshold comfortably

far from 𝛼, then 𝑅1 is considered accurate w.h.p. and outputted directly. This is the good case,

because the query need not consume any privacy. The bad case is when the SV test fails. First, the

query must be executed directly through Laplace, giving a result 𝑅2, whose release costs privacy.

But beyond that, the SV must be reset, which consumes privacy. In total, if the Laplace execution

costs 𝜖 , then releasing 𝑅2 costs 4 ∗ 𝜖! This is what causes the extreme privacy consumption during

the training phase for vanilla PMW, when the SV test mostly fails. Still, in theory, after paying

handsomely for this histogram “miss,” 𝑅2 can be used to update the histogram (the arrow denoted

“update (R2)” in Fig .3.4), in hopes that future correlated queries “hit” in the histogram.

PMW-Bypass adds three components to PMW: (1) a heuristic that assesses whether the his-

togram is likely ready to answer 𝑄 with the desired accuracy; (2) a bypass branch, taken if the

histogram is deemed not ready and direct query execution with Laplace instead of going through

(and likely failing) the SV test; and (3) an external update procedure that updates the histogram

53



with the bypass branch result. Given 𝑄, PMW-Bypass first consults the heuristic, which only

inspects the histogram, so its use is free. Two cases arise:

Case 1: If the heuristic says the histogram is ready to answer Q with 𝛼-accuracy w.h.p., then the

PMW is used, 𝑅1 is generated, and the SV is invoked to test 𝑅1’s actual accuracy. If the heuristic’s

assessment was correct, then this test will succeed, and hence the free, 𝑅1 output branch will be

taken. Of course, no heuristic that lacks access to the raw data can guarantee that 𝑅1 will be

accurate enough, so if the heuristic was actually wrong, then the SV test will fail and the expensive

𝑅2 path is taken. Thus, a key design question is whether there exist heuristics good enough to

make PMW-Bypass effective. We discuss heuristic designs below, but the gist is that simple and

easily tunable heuristics work well, enabling the significant privacy budget savings in Fig .3.3.

Case 2: If the heuristic says the histogram is not ready to answer Q with 𝛼-accuracy w.h.p., then

the bypass branch is taken and Laplace is invoked directly, giving result 𝑅3. Now, PMW-Bypass

must pay for Laplace, but because it bypassed the PMW, it does not risk an expensive SV reset. A

key design question here is whether we can still reuse 𝑅3 to update the histogram, even though we

did not, in fact, consult the SV to ensure that the histogram is truly insufficiently trained for Q. We

prove that performing the same kind of update as the PMW would do, from outside the protocol,

would break its theoretical convergence guarantee. Thus, for PMW-Bypass, we design an external

update procedure that can be used to update the histogram with 𝑅3 while preserving the PMW’s

worst-case convergence, albeit at slower speed.

Heuristic ISHISTOGRAMREADY. One option to assess if a histogram is ready to answer a query

accurately is to check if it has received at least 𝐶 updates, for some global threshold 𝐶. However,

this approach is often imprecise as it fails to detect histogram regions that might still be untrained.

Thus, we use a separate threshold value per bin, raising the question of how to configure all these

thresholds. To keep configuration easy (goal (G6)), we use an adaptive per-bin threshold. For each

bin, we initialize its threshold 𝐶 with a value 𝐶0 and increment 𝐶 by an additive step 𝑆0 every time

the heuristic errs (i.e., predicts it is ready when it is in fact not ready for that query). While the

threshold is too small, the heuristic gets penalized until it reaches a threshold high enough to avoid

54



mistakes. For queries that span multiple bins, we only penalize the least-updated bins to prevent a

single, inaccurate bin from setting back the histogram from queries using accurate bins only. With

these thresholds, we only configure initial parameters 𝐶0 and 𝑆0, which we find experimentally

easy to do (§3.7.2).

Algorithm 2 PMW-Bypass algorithm.
1: Cfg.: PRIVACYACCOUNTANT, HEURISTIC, accuracy params (𝛼, 𝛽), histogram convergence params lr, 𝜏,

database DATA with 𝑛 rows.
2: function UPDATE(ℎ, 𝑞, 𝑠)
3: Update estimated values: ∀𝑣 ∈ X, 𝑔(𝑣) ← ℎ(𝑣)𝑒𝑠∗𝑞 (𝑣)
4: Renormalize: ∀𝑣 ∈ X, ℎ(𝑣) ← 𝑔(𝑣)/∑𝑤∈X 𝑔(𝑤)
5: return ℎ
6: function CALIBRATEBUDGET(𝛼, 𝛽)
7: return 4 ln(1/𝛽)

𝑛𝛼

8: Initialize histogram ℎ to uniform distribution on X
9: 𝜖 ← CALIBRATEBUDGET(𝛼, 𝛽)

10: PRIVACYACCOUNTANT.PAY(3 · 𝜖) // Pay to initialize first SV
11: while PRIVACYACCOUNTANT.HASBUDGET() do
12: 𝛼̂← 𝛼/2 + Lap 1/𝜖𝑛 // SV reset
13: 𝑆𝑉 ← NOTCONSUMED
14: while 𝑆𝑉 == NOTCONSUMED do
15: Receive next query 𝑞
16: if HEURISTIC.ISHISTOGRAMREADY(ℎ, 𝑞, 𝛼, 𝛽) then
17: // Regular PMW branch:
18: if |𝑞(DATA) − 𝑞(ℎ) | + Lap 1/𝜖𝑛 < 𝛼̂ then // SV test
19: Output 𝑅1 = 𝑞(ℎ) →R1, pay nothing
20: else
21: PRIVACYACCOUNTANT.PAY(4 ∗ 𝜖) → R2, pay for
22: Output 𝑅2 = 𝑞(DATA) + Lap 1/𝜖𝑛 Laplace, SV
23: // Update histogram (R2):

24: 𝑠←
{
lr if 𝑅2 > 𝑞(ℎ)
−lr if 𝑅2 < 𝑞(ℎ)

25: ℎ← UPDATE(ℎ, 𝑞, 𝑠)
26: 𝑆𝑉 ← CONSUMED // force SV reset
27: HEURISTIC.PENALIZE(𝑞, ℎ)
28: else
29: // Bypass branch:
30: PRIVACYACCOUNTANT.PAY(𝜖) → R3, pay for
31: Output 𝑅3 = 𝑞(DATA) + Lap 1/𝜖𝑛 Laplace
32: // External update of histogram (R3):

33: 𝑠←


lr if 𝑅3 > 𝑞(ℎ) + 𝜏𝛼
−lr if 𝑅3 < 𝑞(ℎ) − 𝜏𝛼
0 otherwise // no updates if we’re not confident!

34: ℎ← UPDATE(ℎ, 𝑞, 𝑠)

External updates. While we want to bypass the PMW when the histogram is not “ready” for

a query, we still want to update the histogram with the result from the Laplace execution (R3);

otherwise, the histogram will never get trained. That is the purpose of our external updates (lines

55



33-34 in Alg. 2). They follow a similar structure as a regular PMW update (lines 24-25 in Alg. 2),

with a key difference. In vanilla PMW, the histogram is updated with the result 𝑅2 from Laplace

only when the SV test fails. In that case, PMW updates the relevant bins in one direction or another,

depending on the sign of the error 𝑅2− 𝑞(ℎ). For example, if the histogram is underestimating the

true answer, then R2 will likely be higher than the histogram-based result, so we should increase

the value of the bins (case 𝑅2 > 𝑞(ℎ) of line 24 in Alg. 2).

In PMW-Bypass, external updates are performed not just when the authoritative SV test finds

the histogram estimation inaccurate, but also when our heuristic predicts it to be inaccurate even

though it may actually be accurate. In the latter case, performing external updates in the same

way as PMW updates would add bias into the histogram and forfeit its convergence guarantee.

To prevent this, in PMW-Bypass, external updates are executed only when we are quite confident,

based on the direct-Laplace result 𝑅3, that the histogram overestimates or underestimates the true

result. Line 33 shows the change: the term 𝜏𝛼 is a safety margin that we add to the comparison

between the histogram’s estimation and 𝑅3, to be confident that the estimation is wrong and the

update warranted. This lets us prove worst-case convergence akin to PMW. Finally, like regular

PMW updates, external updates reuse the already DP result 𝑅3, hence they do not consume any

additional privacy budget beyond what was already consumed to generate 𝑅3.

Learning rate. In addition to the bypass option, we make another key change to PMW design for

practicality. When updating a bin, we increase or decrease the bin’s value based on a learning rate

parameter, lr, which determines the size of the update step taken (line 3 in Alg. 2). Prior PMW

works fix learning rates that minimize theoretical convergence time, typically 𝛼/8 [85]. However,

our experiments show that larger values of lr can lead to much faster convergence, as dozens of

updates may be needed to move a bin from its uniform prior to an accurate estimation. However,

increasing lr beyond a certain point can impede convergence, as the updates become too coarse.

Taking cue from deep learning, PMW-Bypass uses a scheduler to adjust 𝑙𝑟 over time. We start with

a high lr and progressively reduce it as the histogram converges.

Guarantees. (G1) Privacy: PMW-Bypass preserves 𝜖𝐺-DP across the queries it executes. (G2)

56



week 1

[1,2]

[1,4]

[2,2]

partitioned data stream (time →)

Q: SELECT COUNT(*)
       WHERE Positive=1 AND
       Time BETWEEN week 2 AND week 4

h=8
C=1

h=21.7
C=0

h=21.7
C=0

h=21.7
C=0

h=2.9
C=2

h=8
C=1

h=8
C=1

h=8
C=1

week 2 week 3 week 4 future

h=9.8
C=1

h=26.7
C=0

h=26.7
C=0

h=9.8
C=1

h=3.6
C=2

h=9.8
C=1

h=9.8
C=1

h=3.6
C=2

h=17.8
C=1

h=48.4
C=0

h=48.4
C=0

h=31.5
C=0.5

h=6.6
C=2

h=17.8
C=1

h=17.8
C=1

h=11.6
C=1.5

h=11.8
C=1

h=32.2
C=0

h=11.8
C=1

h=11.8
C=1

h=4.4
C=2

h=11.8
C=1

h=11.8
C=1

h=4.4
C=2

h=9.8
C=1

h=26.7
C=0

h=9.8
C=1

h=9.8
C=1

h=3.6
C=2

h=9.8
C=1

h=26.7
C=2

h=3.6
C=2

h=21.7
C=1

h=58.9
C=0

h=21.7
C=1

h=21.7
C=1

h=8
C=2

h=21.7
C=1

h=38.6
C=1.5

h=8
C=2

h=39.5
C=1

h=107.3
C=0

h=70.1
C=0.5

h=53.2
C=0.75

h=14.6
C=2

h=39.5
C=1

h=56.4
C=1.25

h=19.6
C=1.75

[3,4]

[4,4][1,1] [3,3] [5,5]

Fig. 3.5: Example of tree-structured histograms.

Accuracy: PMW-Bypass is 𝛼-accurate with 1 − 𝛽 probability for each query. This property stems

from how we calibrate Laplace budget 𝜖 to 𝛼 and 𝛽. This is function CALIBRATEBUDGET in

Alg. 2 (lines 6-7). (G3) Worst-case convergence: If lr/𝛼 < 𝜏 ≤ 1/2, then w.h.p. PMW-Bypass

needs to perform at most ln |X|
lr(𝜏𝛼−lr)/2 updates. PMW-Bypass’s worst-case convergence is thus similar

to PMW’s, but roughly 1/2𝜏 times slower. §3.7.2 confirms this empirically.

3.5.4 Tree-Structured PMW-Bypass

We now switch to the partitioned-database use cases, focusing on time-based partitions, as

in timeseries databases, whether static or dynamic. Rather than accessing the entire database,

analysts tend to query specific time windows, such as requesting the Covid positivity rate over

the past week, or the fraction of minors diagnosed with Covid in the two weeks following school

reopening. This allows the opportunity to leverage DP’s parallel composition: the database is

partitioned by time (say a week’s data goes in one partition), and privacy budget is consumed at

the partition level. Queries can run at finer or coarser granularity, but they will consume privacy

against the partition(s) containing the requested data. With this approach, a system can answer

more queries under a fixed global (𝜖𝐺 , 𝛿𝐺)-DP guarantee compared to not partitioning [8, 9, 83,

62]. We implement support for partitioning and parallel composition in Turbo through a new

caching object called a tree-structured PMW-Bypass.

57



Example. Fig .3.5 shows an extension of the running example in §4.3.1, with the database parti-

tioned by week. Denote 𝑛𝑖 the size of each partition. A new query, 𝑄, asks for the positivity rate

over the past three weeks. How should we structure the histograms we maintain to best answer

this query? One option would be to maintain one histogram per partition (i.e., just the leaves in

the figure). To resolve 𝑄, we query the histograms for weeks 2, 3, 4. Assume the query results in

an update. Then, we need to update histograms, computing the answer with DP within our 𝛼 error

tolerance. Updating histograms for weeks 2, 3, and 4 requires querying the result for each of them

with parallel composition. Given that Laplace(1/𝑛𝜖) has standard deviation
√

2/𝑛𝜖 , for week 4 for

instance, we need noise scaled to 1/𝑛4𝜖 . Thus, we consume a fairly large 𝜖 for an accurate query

to compensate for the smaller 𝑛4. Another option would be to use one histogram per range (i.e.

set of contiguous partitions), but that involves maintaining a large state that grows quadratically in

the number of partitions.

Instead, our approach is to maintain a binary-tree-structured set of histograms, as shown in

Fig .3.5. For each partition, but also for a binary tree growing from the partitions, we maintain

a separate histogram. To resolve 𝑄, we split the query into two sub-queries, one running on the

histogram for week 2 ([2,2]) and the other running on the histogram for the range week 3 to week

4 ([3,4]). That last sub-query would then run on a larger dataset of size 𝑛3 + 𝑛4, requiring a smaller

budget consumption to reach the target accuracy.

Design. Fig . 3.6 shows our design. Given a query 𝑄, we split it into sub-queries based on the

histogram tree, applying the min-cuts algorithm to find the smallest set of nodes in the tree that

covers the requested partitions. In our example, this gives two sub-queries, 𝑄′ and 𝑄′′, running on

histograms [2,2] and [3,4], respectively. For each sub-query, we use our heuristic to decide whether

to use the histogram or invoke Laplace directly. If both histograms are “ready,” we compute their

estimations and combine them into one result, which we test with an SV against an accuracy

goal. In our example, there are only two sub-queries, but in general there can be more, some

of which will use Laplace while others use histograms. We adjust the SV’s accuracy target to an

(𝛼𝑆𝑉 , 𝛽𝑆𝑉 ) calibrated to the aggregation that we will need to do among the results of these different

58



H H

Yes

[2,2]
h=9.8
C=1

h=26.7
C=0

h=26.7
C=0

h=9.8
C=1

h=3.6
C=2

h=9.8
C=1

h=9.8
C=1

h=3.6
C=2

[3,4]

R1’

No

R1’’

combine histogram estimations

R1

split query (min-cuts in histogram tree)

Q’

SV reset

combine Laplace with histogram results

Yes

No

Yes

SV
Is R1 αSV-accurate

 w.h.p.?

Q result (α-accurate w.h.p.)

Q

No

R3’ R3’’

R2’ / R2’’R1

pay 
against 
weeks 

2-4

Q’’

pay 
against 
weeks 

3-4

pay 
against 
week 2

h=21.7
C=1

h=58.9
C=0

h=21.7
C=1

h=21.7
C=1

h=8
C=2

h=21.7
C=1

h=38.6
C=1.5

h=8
C=2

Fig. 3.6: Tree-structured PMW-Bypass.

mechanisms. We pay for any Laplace’s and SV resets against the queried data partitions and finally

combine Laplace results with histogram-based results. Each subquery updates the corresponding

histograms of the tree and increments 𝑐 for updated nodes.

Guarantees. (G1) Privacy and (G2) accuracy are unchanged. (G3) Worst-case convergence: For

𝑇 partitions, if lr/𝛼 < 𝜏 ≤ 1/2, then w.h.p. we perform at most 2𝑇 (⌈log𝑇⌉+1) ln |X|
𝜂(𝜏𝛼−𝜂)/2 updates.

3.5.5 Histogram Warm-Start

An opportunity exists in streams to warm-start histograms from previously trained ones to

converge faster. Prior work on PMW initialization [86] only justifies using a public dataset close

to the private dataset to learn a more informed initial value for histogram bins than a uniform prior.

We prove that warm-starting a histogram by copying an entire, trained histogram preserves the

worst-case convergence. In Turbo, we use two procedures: for new leaf histograms, we copy the

previous partition’s leaf node; for non-leaf histograms, we take the average of children histograms.

We also initialize the per-bin thresholds and update counters of each node.

59



Session

Data Analyst
(multiple, untrusted)

QueryExpr DataFrame

Tumult Analytics

QueryExpr-
Compiler

Tumult Core

Measurement

Static 
Database/Dataset

Admin
(one, trusted)

DataFrame API

evaluate(.)

QueryExpr

PrivacyAccountant

turbo-tumult

New type of 
Measurement to 

access true result

Hooks for 
QueryExprCompiler

Override 
Session.evaluate(.) to 

query Turbo

turbo-lib
(Turbo)

Exact-Cache

PMW-Bypass

Redis

miss?

stores all state for 
caching objects and 
sparse vectors (SV)Tumult Core API

# 1. Implemented by turbo-lib:

turbo.run(TurboQuery, PrivacyAccountant, 
    QueryExecutor) → Any;

# 2. To be implemented by the user of Turbo 
(e.g., turbo-tumult, turbo-sql):

abstract class TurboQuery {
  abstract getAggregationType() → string;
  abstract getDataViewID() → int;
  abstract getDataViewSize() → int;
  abstract getFilterClause() → map;
}

abstract class PrivacyAccountant {
  abstract consume(PrivacyBudget)
      raises InsufficientPrivacyBudgetException;
}

abstract class QueryExecutor {
  abstract executeNPQuery(TurboQuery) → Any
  abstract executeDPQuery(TurboQuery,
      PrivacyBudget,  
      true_result: Any=None) → Any
}

Turbo API

Tu
rb

o 
A

P
I

(a) Architecture Turbo-Tumult integration (b)    Turbo API

Tumult Analytics API

Fig. 3.7: (a) Turbo integration into Tumult. (b) Turbo API.

Guarantees. (G1) Privacy and (G2) accuracy guarantees are unchanged. (G3) Worst-case con-

vergence: If there exists 𝜆 ≥ 1 such that the initial histogram ℎ0 in Alg. 2 satisfies ∀𝑥 ∈ X, ℎ0(𝑥) ≥
1

𝜆 |X| , then we show that each PMW-Bypass converges, albeit at a slower pace (Thm. ??). The same

properties hold for the tree.

3.6 Prototype Implementations

We prototype Turbo in three components that we release open-source: (1) turbo-lib, a library

that contains Turbo-specific functionality, notably the caching objects and functional components

in the Turbo architecture (Fig. 4.3); (2) turbo-tumult, a library that connects turbo-lib with Tumult

Analytics, to add caching functionality into that existing DP system; and (3) turbo-sql, a basic

standalone library to run a select subset of DP SQL queries through turbo-lib directly against a

traditional, non-DP database, such as TimescaleDB or PostgreSQL. The reason for both (2) and

(3) is that Tumult provides a more complete database query engine, supporting a wide variety of

Spark-SQL-like queries while having significant limitations with respect to parallel composition

on partitioned databases. Our integration with Tumult (2) shows that Turbo can be integrated with

60



a real, existing DP system, while our standalone querying library (3) can let us experiment with

both non-partitioned and partitioned databases, in both static- and streaming-DB settings. We use

a version of (3) (released through the SOSP’23 artifact) throughout our evaluation, but describe

here predominantly our integration with Tumult, which can serve as a blueprint for integration

with other existing DP systems in the future. Finally, we separately release the artifact that we

used in our evaluation and which was evaluated by the SOSP’23 artifact evaluation committee. All

are available from the repository: https://github.com/columbia/turbo.

Fig. 3.7(a) shows the architecture of our Turbo-Tumult integration. The grey boxes are Turbo-

specific while the clear boxes are unchanged Tumult components.

Tumult overview. Without Turbo, Tumult functions as follows. It consists of two main com-

ponents: (1) Tumult Core, a library that implements primitive DP mechanisms and privacy ac-

counting; and (2) Tumult Analytics, a layer on top of Tumult Core that exports a higher-level,

Spark-SQL-like query interface on top of one or more static datasets or databases. Tumult Core

exports a low-level API consisting of a privacy accountant and a measurement abstraction, which is

the Tumult terminology for a DP computation. It implements the necessary methods to “evaluate”

a measurement on top of a dataset and deduct its privacy budget against the accountant. Tumult

Analytics implements two main abstractions: (1) a session, which represents the context against

which Tumult will enforce a global privacy budget across all queries issued against this session

and (2) a Spark-SQL-like interface for analysts to construct queries that consists of multiple trans-

formations chained one after another (such as filters, projections, joins, etc.) against one or more

datasets, followed by a single aggregate function (such as an average, count, sum, median, per-

centiles, stdev, etc.), with potential for splitting and grouping the results by one or more attributes.

Compared to other DP SQL databases, it is our impression that Tumult supports a fairly wide range

of SQL that can be handled with DP.

For the purposes of this paper, we will assume that an administrator creates a session upfront,

specifying a global privacy budget to be enforced and hosts this session as a service to guard an-

alysts’ accesses to a sensitive dataset (or datasets) underneath. Analysts, which can be many and

61

https://github.com/columbia/turbo


are untrusted, send their query expressions for execution against the session. The session is then

responsible for executing each query by first compiling it into a measurement and then evaluating

it through the Tumult Core, which will deduct the necessary privacy budget. While the measure-

ment abstraction is a quite general representation of a DP computation, Tumult Core and Analytics

assume a Spark DataFrame-based API for interacting with the dataset(s) underneath. Thus, mea-

surements compiled through Tumult Analytics, will be Spark DataFrame queries – to be executed

through Spark – in which Tumult Analytics transparently includes an additional operation that adds

an appropriately scaled amount of noise to the result of the aggregation. A Tumult measurement

encapsulates this compiled Spark DataFrame query, along with information regarding the privacy

budget it is programmed to expend upon its execution. Tumult Analytics hands over this mea-

surement for Tumult Core, which executes the DataFrame query through Spark and deducts the

measurement’s reported privacy consumption through its privacy accountant.

Turbo-Tumult. The preceding describes Tumult and its main abstractions (relevant for this paper)

without Turbo. Tumult itself has no caching capabilities, so our integration aims to add Turbo

as a caching layer in Tumult. The integration consists of two components, denoted in grey in

Fig. 3.7(a). First is turbo-lib, which contains the core Turbo functionality we described in this

paper. Turbo-lib exposes an API, Turbo API, consisting of the functions Turbo exports to and

requires from any user of Turbo, such as turbo-tumult and turbo-sql. Second is turbo-tumult, a

small library that incorporates Turbo into Tumult by invoking and implementing different parts of

the Turbo API.

Turbo-tumult takes a light-touch approach to incorporating Turbo into Tumult, which ensures

that our system is easily adoptable. It manifests in two ways. First, we only extend, but do not

modify, certain classes within Tumult Analytics and implement new types of measurements to

extend, but not change, Tumult Core functionality. Specifically, turbo-tumult provides one type

of externally visible abstraction: a new type of session, called TurboSession, which overrides the

original’s query evaluation function to: (1) incorporate a set of hooks into the query compiler such

that certain information necessary for Turbo is extracted from the query, such as the dataset ID,

62



the type of aggregate function, and the filtering conditions; and (2) if the query can be handled by

Turbo, TurboSession passes it through turbo-lib instead of executing it directly on Tumult Core.

Turbo-lib then checks its own caching objects for an answer, but resorts to Tumult Core – which

it accesses back through the Turbo API, discussed shortly – for execution of the query and for

privacy budget deduction in the Tumult Core accountant.

Second, we take a fail-to-Tumult approach for all queries. Turbo supports a small subset of all

queries supported by Tumult: e.g., we do not support joins, medians, percentiles, and a number

of transformation functions allowed in Tumult. Moreover, Turbo aims to control accuracy of the

queries, and presently that accuracy must be specified upfront, when the cache (e.g., through Tur-

boSession) service is created. Yet, analysts may wish to vary their accuracy targets per query, and

in some cases may wish to specify privacy budgets rather than accuracies for a query. Finally, we

support only certain types of DP mechanisms and definitions in our prototype, specifically those

relying on Laplace, whereas Tumult supports more. Our approach to address these limitations

without restricting analysts’ interaction with Tumult is to consult the Turbo caches only when the

queries exhibit properties we can handle, while resorting to Tumult-based execution when they do

not. As a result, an analyst interacting with a TurboSession will not be restricted in terms of their

queries or accuracy demands compared to interacting with a vanilla Tumult session, but Turbo will

only conserve privacy budget for those queries that it can handle.

The preceding two approaches for light-touch integration of Turbo into Tumult ensure that our

system can be easily adopted.

Turbo API. The Turbo API is the central component for integrating Turbo into real DP systems.

Shown in Fig. 3.7(b), it consists of two components: functionality that Turbo-lib implements and

users invoke to take advantage of its caches (specifically, the run function) and (2) several classes

that users implement to provide Turbo with services it needs from the DP system with which it is

integrated. Turbo needs three types of services from the DP system. First, it needs the ability to ex-

tract certain information about the query, such as: the type of aggregation and filter chain; a unique

ID for the dataset (or partition or view over the dataset or partition) on which the query is run, as

63



Turbo’s state is tied to a dataset/partition/view; and the number of records in that dataset (recall

that our design assumes that the dataset size is public information). This information is supplied

by implementing the TurboQuery interface, which wraps the original, DP-system-specific query

structure into one that supplies the necessary information. For example, our turbo-tumult library

wraps query expressions into a TurboQuery with this enhanced functionality.

Second, Turbo is not a query engine, so it needs the ability to execute a query through the

original DP system. This is provided by implementing the QueryExecutor interface. A peculiarity

of Turbo in this context, which was easy to implement in Tumult but which we anticipate may be

non-trivial to implement in other DP systems, is that Turbo needs not only the ability to execute the

query in a DP way, but also the ability to execute it without DP. Recall that Turbo’s SV checks com-

pares the histogram-based result to the true result of invoking the same query on the data without

DP. Turbo thus needs access to this true result, a piece of functionality that typically DP databases

do not offer publicly, for good, safety-related reasons. Still, in Tumult, due to its highly modular

structure, we find that this functionality can be implemented without having to modify its code

base. Specifically, turbo-tumult implements QueryExecutor.executeNPQuery(.) by defin-

ing a special type of measurement that does not, in fact, incorporate randomness into its aggregate

and which reports as zero the privacy budget being used. This measurement is executed against the

Tumult Core and returns the true result of the query. In turbo-lib, we take care to only leverage this

sensitive result internally during the SV check in a DP way. Moreover, to optimize query execution

in the case that the SV fails, turbo-tumult implements QueryExecutor.executeDPQuery(.)

with the optional ability to reuse a non-private, true result previously obtained for the SV check.

This is achieved by implementing another type of measurement, which, when executed by Tu-

mult Core, will only apply the randomness operation to the given true_result and report the

appropriate amount of privacy budget to be deducted by the Tumult Core’s accountant.

Third, Turbo needs the ability to deduct the privacy budget consumed by the SV reset. This is

supplied by implementing the Turbo PrivacyAccountant interface, with one function: consume.

In turbo-tumult, we implement this interface by defining a third type of measurement, which does

64



not perform any computation but just consumes privacy. We believe that DP systems should export

this kind of functionality to more naturally support extensions.

Turbo-lib. Turbo-lib implements the Turbo design described in this paper, with some notable

restrictions. First, we do not yet support partitioning in the turbo-lib implementation, though that

support exists in our SOSP artifact release, as used in our evaluation. Second, our implementation

only supports count queries presently, although our histograms and exact-match caches can be

extended to support other types of linear aggregations, such as sums, averages, standard deviation.

Third, we use Redis to store all state in Turbo, including the exact-match caches, PMW histograms,

and SV state. Redis can be replaced with a persistent, consistent and durable storage service for

production use.

Turbo-sql. In addition to incorporating Turbo into the Tumult Analytics engine, we are also cre-

ating a basic, standalone, SQL DP database ourselves, which only supports the types of queries

that Turbo supports, but which can support streaming and partitioning. At the time of this writ-

ing, the most mature version of this library can be found in our SOSP artifact release, but we are

working on a more modular version of this library that presently lacks support for streaming and

partitioning. The full-featured version of this library, which is what we use in our evaluation, re-

ceives simple linear SQL queries as strings, parses them, implements the Turbo API to first check

for answers to them in the Turbo cache, and execute the queries – DP through Laplace or non-DP

(as needed by Turbo) – using TimescaleDB, a streaming version of PostgreSQL.

3.7 Evaluation

We evaluate Turbo using the SOSP artifact version of our own, dedicated DP SQL database

with Turbo support incorporated in it. We use two public timeseries datasets – Covid and CitiBike

– to evaluate Turbo in the three use cases from §3.4.2. Each use case lets us do system-wide

evaluation, answering the critical question: Does Turbo significantly improve privacy budget con-

sumption compared to reasonable baselines for each use case? This corresponds to evaluating our

§3.4.1 design goals (G5) and (G6).

65



In addition, each setting lets us evaluate a different set of caching objects and mechanisms:

(1) Non-partitioned database: We configure Turbo with a single PMW-Bypass and Exact-Cache,

letting us evaluate the PMW-Bypass object, including its empirical convergence and the impact of

its heuristic and learning rate parameters.

(2) Partitioned static database: We partition the datasets by time (one partition per week) and

configure Turbo with the tree-structured PMW-Bypass and Exact-Cache. This lets us evaluate the

tree-structured cache.

(3) Partitioned streaming database: We configure Turbo with the tree-structured PMW-Bypass,

Exact-Cache, and histogram warm-up, letting us evaluate warm-up.

As highlighting, our results show that PMW-Bypass unleashes the power of PMW, enhancing

privacy budget consumption for linear queries well beyond the conventional approach of using

an exact-match cache (goal (G5)). Moreover, Turbo as a whole seamlessly applies to multiple

settings, with its novel tree-structured PMW-Bypass structure scoring significant benefit for time-

series workloads where database can be partitioned to leverage parallel composition (goal (G6)).

Configuration of our objects and mechanisms is straightforward (goal (G7)), and we tune them

based on empirical convergence rather than theoretical convergence, boosting their practical ef-

fectiveness (goal (G4)). Finally, we provide a basic runtime and memory evaluation, which shows

that while Turbo performs reasonably for our datasets, further research is needed for larger-domain

data.

3.7.1 Methodology

For each dataset, we create query workloads by (1) generating a pool of linear queries and (2)

sampling queries from this pool based on a Zipfian distribution. Covid uses a completely synthetic

query pool. CitiBike uses a pool based on real-user queries from prior CitiBike analyses. We use

the former as a microbenchmark, the latter as a macrobenchmark.

Covid. Dataset: We take a California dataset of Covid-19 tests from 2020 that provides daily ag-

gregate information of the number of Covid tests and their positivity rates for various demographic

66



PMW Exact-Cache Turbo

 0

 1

 2

 3

 4

0K 10K 20K 30K 40K 50K 60K 70K

c
u
m
u
la
tiv
e

 b
u
d
g
e
t

# of queries

(a) Turbo on Covid, 𝑘zipf = 0

 0

 1

 2

 3

 4

0K 10K 20K 30K 40K 50K 60K 70K

c
u
m
u
la
tiv
e

 b
u
d
g
e
t

# of queries

(b) Turbo on Covid, 𝑘zipf = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0K 15K 30K 45K 60K

(PMW line suppressed for visibility)

c
u
m
u
la
tiv
e

 b
u
d
g
e
t

# of queries

(c) Turbo on CitiBike, 𝑘zipf = 0

0

5k

10k

15k

20k

25k

 0.001  0.01  0.1  1

#
 o
f 
u
p
d
a
te
s
 u
n
til

 c
o
n
v
e
rg
e
n
c
e

learning rate lr (logscale)

PMW
PMW-Bypass

(d) Empirical convergence

Fig. 3.8: Non-partitioned database: (a-c) system-wide evaluation (Question 1); (d) empirical
convergence for PMW-Bypass vs. PMW (Question 2). (a-c) Turbo, instantiated with one PMW-
Bypass and Exact-Cache, significantly improves budget consumption compared to both baselines.
(d) Uses Covid 𝑘zipf = 1. PMW-Bypass has similar empirical convergence to PMW, and both
converge faster with much larger lr than anticipated by worst-case convergence.

groups defined by age × gender × ethnicity. We combine this data with US Census data to generate

a synthetic dataset that contains 𝑛 = 50, 426, 600 per-person test records, each with the date and

four attributes: positivity, age, gender, and ethnicity. These attributes have domain sizes of 2, 4,

2 and 8, respectively, so the dataset domain size is 𝑁 = 128. The dataset spans 50 weeks, so in

partitioned use cases we have up to 50 partitions. Query pool: We create a synthetic and rich pool

of correlated queries comprising all possible count queries that can be posed on Covid. This gives

34, 425 unique queries, plenty for us to microbenchmark Turbo.

67



CitiBike. Dataset: We take a dataset of NYC bike rentals from 2018-2019, which includes infor-

mation about individual rides, such as start/end date, start/end geo-location, and renter’s gender and

age. The original data is too granular with 4,000 geo-locations and 100 ages, making it impractical

for PMWs. Since all the real-user analyses we found consider the data at coarser granularity (e.g.

broader locations and age brackets), we group geo-locations into ten neighborhoods and ages into

four brackets. This yields a dataset with 𝑛 = 21, 096, 261 records, domain size 𝑁 = 604, 800, and

spanning 50 weeks. Query pool: We collect a set of pre-existing CitiBike analyses created by var-

ious individuals and made available on Public Tableau [87]. An example is here [88]. We extract

30 distinct queries, most containing ‘GROUP BY’ statements that we decompose into multiple

primitive queries that can interact with Turbo histograms. This gives us a pool of 2, 485 queries,

which is smaller than Covid’s but more realistic and suitable as a macrobenchmark.

Workload generation. As is customary in caching literature [89, 90, 91], we use a Zipfian dis-

tribution to control the skewness of query distribution, which affects hit rates in the exact-match

cache. From a pool of 𝑄 queries, a query of type 𝑥 ∈ [1, 𝑄] is sampled with probability ∝ 𝑥−𝑘zipf ,

where 𝑘zipf ≥ 0 is the parameter that controls skewness. We evaluate with several 𝑘zipf values but

report only results for 𝑘zipf = 0 (uniform) and 𝑘zipf = 1 (skewed) for Covid. For CitiBike, we

evaluate only for 𝑘zipf = 0 to avoid reducing the small query pool further with skewed sampling.

For streaming, queries arrive online with arrival times following a Poisson process; they request a

window of certain size over recent timestamps.

Metrics. • Average cumulative budget: the average budget consumed across all partitions. •

Systems metrics: traditional runtime, process RAM. • Empirical convergence: We periodically

evaluate the quality of Turbo’s histogram by running a validation workload sampled from the same

query pool. We measure the accuracy of the histogram as the fraction of queries that are answered

with error ≥ 𝛼/2 by the histogram. We define empirical convergence as the number of histogram

updates necessary to reach 90% validation accuracy.

Default parameters. Unless stated otherwise, we use the following parameter values: privacy

(𝜖𝐺 = 10, 𝛿𝐺 = 0); accuracy (𝛼 = 0.05, 𝛽 = 0.001); for Covid: {learning rate 𝑙𝑟 starts from

68



 0

 0.5

 1

 1.5

 2

0K 20K 40K 60Ka
v
g
. 
c
u
m
u
la
tiv
e

 b
u
d
g
e
t

# of queries

Exact-Cache (for baseline)
PMW-Bypass C0=1K (too aggressive)
PMW-Bypass C0=100
PMW-Bypass C0=10
PMW-Bypass C0=1 (too optimistic)

(a) Impact of heuristic 𝐶0 (𝑆0 = 1)

 0

 0.5

 1

 1.5

 2

0K 20K 40K 60Ka
v
g
. 
c
u
m
u
la
tiv
e

 b
u
d
g
e
t

# of queries

Exact-Cache (for baseline)
PMW-Bypass lr=0.00625 (too timid)
PMW-Bypass lr=0.0125
PMW-Bypass lr=0.025
PMW-Bypass 0.05
PMW-Bypass lr=0.125 (too aggressive)

(b) Impact of learning rate lr

Fig. 3.9: Impact of parameters (Question 3). Uses Covid 𝑘zipf = 1. Being too optimistic or
pessimistic about the histogram’s state (a), or too aggressive or timid in learning from each update
(b), gives poor performance.

0.25 and decays to 0.025, heuristic (𝐶0 = 100, 𝑆0 = 5), external updates 𝜏 = 0.05}; for CitiBike:

{learning rate 𝑙𝑟 = 0.5, heuristic (𝐶0 = 5, 𝑆0 = 1), external updates 𝜏 = 0.01}.

3.7.2 Use Case (1): Non-partitioned Database

System-wide evaluation. Question 1: In a non-partitioned database, does Turbo significantly im-

prove privacy budget consumption compared to vanilla PMW and a simple Exact-Cache? Fig. 3.8a-

3.8c show the cumulative privacy budget used by three workloads as they progress to 70𝐾 queries.

Two workloads correspond to Covid, one uniform (𝑘zipf = 0) and one skewed (𝑘zipf = 1), and

one uniform workload for CitiBike. Turbo surpasses both baselines across all three workloads.

The improvement is enormous when compared to vanilla PMW: 15.9 − 37.4×! PMW’s conver-

gence is rapid but consumes lots of privacy; Turbo uses little privacy during training and then

executes queries for free. Compared to just an Exact-Cache, the improvement is less dramatic

but still significant. The greatest improvement over Exact-Cache is seen in the uniform Covid

workload: 16.7× (Fig. 3.8a). Here, queries are relatively unique, resulting in low hit rate for the

Exact-Cache. That hit rate is higher for the skewed workload (Fig. 3.8b), leaving less room for

69



Exact-Cache Tree Exact-Cache Turbo

 0

 0.2

 0.4

 0.6

 0.8

 1

0K 100K 200K 300Ka
v
g
. 
c
u
m
u
la
tiv
e

 b
u
d
g
e
t

# of queries

(a) Turbo on Covid, 𝑘zipf = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

0K 100K 200K 300Ka
v
g
. 
c
u
m
u
la
tiv
e

 b
u
d
g
e
t

# of queries

(b) Turbo on Covid, 𝑘zipf = 1

 0

 0.4

 0.8

 1.2

 1.6

 2

0K 100K 200K 300Ka
v
g
. 
c
u
m
u
la
tiv
e

 b
u
d
g
e
t

# of queries

(c) Turbo on CitiBike, 𝑘zipf = 0

Fig. 3.10: Partitioned static database: system-wide evaluation (Question 5). Turbo is instan-
tiated with tree-structured PMW-Bypass and Exact-Cache. Turbo significantly improves budget
consumption compared to both a single Exact-Cache and a tree-structured set of Exact-Caches.

improvement for Turbo: 9.7× better than Exact-Cache. For CitiBike (Fig. 3.8c), the query pool

is much smaller (< 2.5𝐾 queries), resulting in many exact repetitions in a large workload, even if

uniform. Nevertheless, Turbo gives a 1.7× improvement over Exact-Cache. And in this workload,

Turbo outperforms PMW by 37.4× (omitted from figure for visualization reasons). Overall, then,

Turbo significantly reduces privacy budget consumption in non-partitioned databases, achieving

1.7 − 15.9× improvement over the best baseline for each workload (goal (G5)).

PMW-Bypass evaluation. Using Covid 𝑘zipf = 1, we microbenchmark PMW-Bypass to un-

derstand the behavior of this key Turbo component. Question 2: Does PMW-Bypass converge

similarly to PMW in practice? Through theoretical analysis, we have shown that PMW-Bypass

achieves similar worst-case convergence to PMW, albeit at slower speed (§3.5.3). Fig. 3.8d com-

pares the empirical convergence (defined in §4.7.1) of PMW-Bypass vs. PMW, as a function of

the learning rate 𝑙𝑟. We make three observations, two of which agree with theory, and the last

differs. First, the results confirm the theory that (1) PMW-Bypass and PMW converge similarly,

but (2) for “good” values of 𝑙𝑟, vanilla PMW converges slightly faster: e.g., for 𝑙𝑟 = 0.025, PMW-

Bypass converges after 1853 updates, while PMW after 944. Second, as theory suggests, very

large values of lr (e.g., 𝑙𝑟 ≥ 0.4) impede convergence in practice. Third, although theoretically,

𝑙𝑟 = 𝛼/8 = 0.00625 is optimal for worst-case convergence, and it is commonly hard-coded in

PMW protocols [85], we find that empirically, larger values of 𝑙𝑟 (e.g., 𝑙𝑟 = 0.05, which is 8×

larger) give much faster convergence. This is true for both PMW and PMW-Bypass, and across all

70



our workloads. This justifies the need to adapt and tune mechanisms based on not only theoretical

but also empirical behavior (goal (G4)).

Question 3: How do PMW-Bypass heuristic, learning rate, and external update parameters

impact consumed budget? We experimented with all parameters and found that the two most im-

pactful are (a) 𝐶0, the initial threshold for the number of updates each bin involved in a query must

have received to use the histogram, and (b) the learning rate. Fig. 3.9 shows their effects. Heuristic

𝐶0 (Fig. 3.9a): Higher 𝐶0 results in a more pessimistic assessment of histogram readiness. If it’s

too pessimistic (𝐶0 = 1𝐾), PMW is never used, so we follow a direct Laplace. If it’s too optimistic

(𝐶0 = 1), errors occur too often, and the histogram’s training overpays. 𝐶0 = 100 is a good value

for this workload. Learning rate lr (Fig. 3.9b): Higher 𝑙𝑟 leads to more aggressive learning from

each update. Both too aggressive (𝑙𝑟 = 0.125) and too timid (𝑙𝑟 = 0.00625) learning slow down

convergence. Good values hover around 𝑙𝑟 = 0.025. Overall, only a few parameters affect perfor-

mance, and even for those, performance is relatively stable around good values, making them easy

to tune (goal (G7)).

Question 4: How does Turbo’s adaptive, per-bin heuristic compare to alternatives? We ex-

perimented with three alternative ISHISTOGRAMREADY designs that forgo either (1) the per-bin

granular thresholds, or (2) the adaptivity property, or (3) both. We make two observations. First,

the coarse-grained heuristics consume more privacy budget than the fine-grained heuristics, espe-

cially on more skewed workloads, such as 𝑘zipf = 1.5, which have less diversity so they tend to

train histogram bins less uniformly. For example, a coarse-grained heuristic that uses a histogram-

level count of the number of updates, with a threshold 𝐶0 to determine when the histogram is

ready to receive any query, consumes at best 0.7 global privacy budget on a Covid workload with

𝑘zipf = 1.5; this is achieved when 𝐶0 is optimally configured to a value of 2070 updates. In con-

trast, a fine-grained heuristic, which uses a per-bin update count with a threshold 𝐶0 for each bin,

consumes at best 0.44 global privacy budget, achieved when 𝐶0 is set to 160 updates. Second,

the adaptive heuristics consume similar budget as the optimally-configured, non-adaptive ones,

but the former are much easier to configure, as they offer stable performance around wide ranges

71



of the 𝐶0 parameter. For example, when 𝐶0 varies in range [20, 200], the non-adaptive per-bin

heuristic’s budget consumption varies in range [0.44, 0.81] for the 𝑘zipf = 1.5 workload, and in

range [0.31, 0.76] for 𝑘zipf = 1 workload. In contrast, Turbo’s adaptive, per-bin heuristic’s bud-

get consumption varies in much tighter ranges under the same circumstances: [0.44, 0.52] and

[0.28, 0.48] for the 𝑘zipf = 1.5 and 𝑘zipf = 1 workload, respectively. Thus, Turbo’s heuristic is the

best of these options.

3.7.3 Use Case (2): Partitioned Static Database

System-wide evaluation. Question 5: In a partitioned static database, does Turbo significantly

improve privacy budget consumption, compared to a single Exact-Cache and a tree-structured

set of Exact-Caches? We divide each database into 50 partitions and select a random contiguous

window of 1 to 50 partitions for each query. We adjust the (𝐶0, 𝑆0) heuristic parameters to (50, 1)

for Covid and (1, 1) for CitiBike. Fig. 3.10a-3.10c show the average budget consumed per partition

up to 300K queries. Compared to the static case, Turbo can now support more queries under

𝜖𝐺 = 10 thanks to parallel composition: each query only consumes privacy from the accessed

partitions. Turbo further divides privacy budget consumption by 1.9 − 4.7× compared to the best-

performing baseline for each workload, demonstrating its effectiveness as a caching strategy for

the static partitioned use case.

Tree structure evaluation. Question 6: When does the tree structure for histograms outperform a

flat structure that maintains one histogram per partition? We vary the average size of the windows

requested by queries from 1 to 50 partitions based on a Gaussian distribution with std-dev 5. We

find the tree structure for histograms is beneficial when queries tend to request more partitions (25

partitions or more). Because the tree structure maintains more histograms than the flat structure,

it fragments the query workload more, resulting in fewer histogram updates per histogram and

more use of direct-Laplace. The tree’s advantage in combining fewer results makes up for this

privacy overhead caused by histogram maintenance when queries tend to request larger windows of

partitions, while the linear structure is more justified when queries tend to request smaller windows

72



Exact-Cache Tree Exact-Cache Turbo without Warm-start Turbo with Warm-start

 0

 0.2

 0.4

 0.6

 0.8

 1

0K 100K 200K 300Ka
v
g
. 
c
u
m
u
la
tiv
e

 b
u
d
g
e
t

# of queries

(a) Turbo on Covid, 𝑘zipf = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

0K 100K 200K 300Ka
v
g
. 
c
u
m
u
la
tiv
e

 b
u
d
g
e
t

# of queries

(b) Turbo on Covid, 𝑘zipf = 1

 0

 0.4

 0.8

 1.2

 1.6

 2

0K 100K 200K 300Ka
v
g
. 
c
u
m
u
la
tiv
e

 b
u
d
g
e
t

# of queries

(c) Turbo on CitiBike, 𝑘zipf = 0

 0

 50

 100

 150

 200

Covid CitiBike

ru
n
ti
m
e
 (
m
s
)

Exact-Cache hit
PMW-Bypass R1 output path
PMW-Bypass R2 output path
PMW-Bypass R3 output path

(d) Runtime evaluation

Fig. 3.11: (a-c) Partitioned streaming database: system-wide consumed budget (Question 7);
(d) PMW-Bypass runtime in non-partitioned setting (Question 8). (a-c) Turbo is instantiated
with tree-structured PMW-Bypass and Exact-Cache, with and without warm-start. (d) Uses Covid,
𝑘zipf = 1, and one Exact-Cache and PMW-Bypass. Shows execution runtime for different execu-
tion paths. Most expensive is when the SV test fails.

of partitions.

3.7.4 Use Case (3): Partitioned Streaming Database

System-wide evaluation. Question 7: In streaming databases partitioned by time, does Turbo

significantly improve privacy budget consumption compared to baselines? Does warm-start help?

Fig. 3.11a-3.11c show Turbo’s budget consumption compared to the baselines. The experiments

simulate a streaming database, where partitions arrive over time and queries request the latest 𝑃

partitions, with 𝑃 chosen uniformly at random between 1 and the number of available partitions.

Turbo outperforms both baselines significantly for all workloads, particularly when warm-start is

73



enabled. Without warm-start, Turbo improves performance by 1.5 − 3.5× at the end of the work-

load. With warm-start, Turbo gives 1.9 − 5.4× improvement over the best baseline for each work-

load, showing its effectiveness for the streaming use case. When there is a large variety of unique

queries the tree-structured Exact-Cache has a significantly better hit-rate than the Exact-Cache

baseline and performs better (Fig. 3.11a). In Fig. 3.11b and 3.11c the query pool is considerably

smaller. Both baselines have a good enough hit-rate while the tree-structured Exact-Cache needs

to consume more privacy budget to compensate for the aggregation error which makes it perform

worse. This concludes our evaluation across use cases (goal (G6)).

3.7.5 Runtime and Memory Evaluation

Question 8: What are Turbo’s runtime and memory bottlenecks? We evaluate Turbo’s runtime

and memory consumption to identify areas of improvement. Fig. 3.11d shows the average runtime

of Turbo’s main execution paths in a non-partitioned database. The Exact-Cache hit path is the

cheapest and the other paths are more expensive. Histogram operations are the bottlenecks in

CitiBike due to the larger domain size (𝑁), while query execution in TimescaleDB is the bottleneck

in Covid due to the larger database size (𝑛). The 𝑅1 path is similar across the two datasets because

their distinct bottlenecks compensate. Failing the SV check (output path 𝑅2) is the costliest path

for both datasets due to the extra operations needed to update the heuristic’s per-bin thresholds.

We also conduct an experiment in the partitioned streaming case and find the same bottlenecks:

TimescaleDB for Covid, histogram operations for CitiBike. Finally, we report Turbo’s memory

consumption in the streaming case with 50 partitions: 5.21MB for Covid and 1.43GB for CitiBike.

For context, the raw datasets occupy on disk 600MB and 795MB, respectively. Thus, Turbo’s

memory overhead is significant and it is caused by the PMWs. The next section discusses this

limitation and proposes potential directions to address it.

74



3.8 Discussion

We discuss several of Turbo’s strengths and weaknesses. Turbo provides benefits when queries

overlap in the data they access, i.e., new queries access histogram bins that have been accessed

by past queries. The functions computed atop these bins can differ among queries (e.g., the new

query can compute an average while all the past ones computed count fractions). If there is no data

overlap in the queries, then Turbo does not give any benefit and comes with memory/computational

costs. This is typical for caching systems: they only help if the workload has some level of locality.

A key strength in Turbo is its support for dynamic workloads, both new queries and new data

arriving in the system. First, Turbo adapts seamlessly to changing queries. In the worst case, the

new queries will access completely “untrained” regions within a histogram. Our heuristic will

detect this and trigger a new cycle of external updates. In more moderate cases, the workload

will touch a mix of “trained” and “untrained” regions. This will yield a mix of hits and misses in

the heuristic, and Turbo will use just the right amount of privacy budget to adapt to these slower

workload changes. Second, thanks to histogram warm-start, Turbo adapts to new data partitions

arriving into the system with minimal privacy budget consumption: as new partitions arrive, their

histograms are initialized from past ones and then fine-tuned for the new data by a few external

updates. This way, the new histograms will quickly start serving query answers for free, conserving

privacy budget. Still, there is a limitation: while we support new data arriving in the system, we

do not support updates on past data; such updates would result in our heuristics predicting less

accurately when the histogram can answer a query, and thus in more expensive SV failures.

By far, Turbo’s biggest limitation is the memory consumed to maintain the PMW histograms.

Each histogram is a RedisAI vector whose size grows with data domain size 𝑁 , i.e., exponentially

in data domain dimension 𝑑 (𝑁 and 𝑑 are defined in Section 3.5.1). With 𝑇 partitions and 𝑘

queries, Turbo maintains a binary tree of such histograms, which means it stores ≈ 2𝑇𝑁 scalar

values. By comparison, the Tree Exact-Cache baseline stores at most log(𝑇)𝑘 scalar values, a

much lower memory consumption. This impacts not only the scale of the datasets that can be

75



handled with Turbo, but also the runtime performance of Turbo-mediated queries. Indeed, as

shown in the preceding section, histogram operations for CitiBike are the bottleneck in runtime

due to the relatively high domain size. Some techniques have previously been proposed to address

this rather fundamental challenge for PMW [92]. However, for even larger-scale deployments,

we believe that it will be worth considering PMW alternatives that may not offer as compelling

convergence guarantees as PMW but which are much more lightweight. One example may be the

relaxed adaptive projection (RAP) [93], which builds a lightweight representation of the dataset

by learning a small subset of representative data points using gradient-descent. One would have to

be willing to forfeit the theoretical convergence guarantees to use this mechanism, and to develop

an adaptive version of RAP to support realistic systems settings involving dynamic workloads and

data. Even so, some of the core concepts we have proposed in this paper may transfer to this new

design, including passing RAP-based estimations through an SV to ensure result accuracy while

incorporating a heuristic-based bypass to avoid expensive failures in the SV.

We also touch on several potential vulnerabilities. First, an adversary may craft queries that

consume budget by generating cache misses. The convergence proofs in §?? provide a bound on

how much such queries can affect budget consumption when a straightforward cutoff parameter

is configured upfront. Second, response time can be a side-channel, which we leave out of scope

but should be addressed in the future. Third, 𝑛, the number of elements in the database (or in each

partition), is considered public knowledge. This can leak information and should be addressed by

consuming some of the budget to compute 𝑛 privately, as done in [9].

Regarding integration of Turbo with a real system, Tumult, we find that it can be done with

ease, thanks to Tumult Core’s extensible measurement API. We anticipate that such integration

will not be as easy or “light touch” in other DP systems we have seen, and in general we see a

gap in the core primitives that DP systems (SQL or not) should implement to support extensions

such as Turbo; these might include providing direct access to the privacy accountant, decoupling

the accountant from the query executor, and others. We encourage the community to work to

articulate this set of key primitives, which we suspect will be useful in other extensions beyond

76



Turbo.

3.9 Related Work

This paper presents the first design, implementation, and evaluation for a general, effective,

and accurate DP-caching system for interactive DP-SQL systems. In computer systems, caching

is a heavily-explored topic, with numerous algorithms and implementations [94, 95, 96], some

pervasively used in processors, operating systems, databases, and more. However, traditional forms

of caching differ significantly from DP caching, justifying the need for a specialized approach for

DP. The primary purposes of traditional caching are to conserve CPU and to improve throughput

and latency; for these purposes, existing caches can be readily reused in DP systems. However, DP

caching aims to conserve privacy budget, which requires a new design to be truly effective. For

example, layering Redis on a DP database to cache query results would save CPU, but for privacy

it would be equivalent to the “Exact-Cache” baseline that our evaluation shows is less effective

than Turbo. This paper thus builds upon general traditional caching concepts – such as the two-

layer design, the principle of generality in supporting multiple workloads – but develops a cache

specialized in conserving DP budget.

To our knowledge, no existing DP system incorporates such a specialized caching system.

Most DP systems do not incorporate caching capabilities at all [83, 97, 30, 71, 98, 99]; [29] ex-

plicitly leaves the design of an effective DP cache for future work. Some DP systems incorporate

what amounts to an Exact-Cache by deterministically generating the same noise upon the arrival

of the same query. Three systems consider more sophisticated mechanisms for DP result reuse:

PrivateSQL [100], Chorus [72], and CacheDP [101]. But the result reuse components in these sys-

tems suffer from such significant limitations that they cannot be considered general and effective

caching designs. PrivateSQL [100] takes a batch of “representative” offline queries and precom-

putes a private synopsis that answers them all. If new queries arrive (online), PrivateSQL uses

the synopsis to answer them in a best-effort way, without accuracy guarantees. It does not learn

on-the-fly from them, so it is unsuited for online workloads and does not support data streams.

77



Chorus [72] provides a trivialized implementation of MWEM, a variant of PMW, however the

implementation only works for databases with a single attribute. The paper does not evaluate the

MWEM-based implementation, nor integrates it as a caching layer. CacheDP [101] is an interac-

tive DP query engine and has a built-in DP cache that answers queries using the Matrix Mecha-

nism [102]. Our experience with the CacheDP code suggests that it is not a general, effective, or

accurate caching layer for DP databases. First, CacheDP’s implementation only scales to a few

attributes and does not support parallel composition on data partitions; this suggests that it is not

general enough to support a variety of workloads. Second, the “Tree Exact-Cache” baseline with

which we compare in evaluation matches, to our understanding, the CacheDP design while scaling

to the higher-dimension datasets and streaming workloads we evaluate against. Our evaluation

shows Turbo more effective than Tree Exact-Cache.

While DP caching are under-explored in systems, the topic of optimizing global privacy bud-

get for a query workload is heavily explored in theory. Approaches include generating synthetic

datasets or histograms that can answer certain classes of queries, such as linear queries, with ac-

curacy guarantees and no further privacy consumption [75, 103, 104, 93, 92, 86]; and optimizing

privacy consumption over a batch of queries by adapting the noise distribution to properties of the

queries [102, 105, 106]. Apart from PMW [75], all these methods operate in the offline setting,

where queries are known upfront. This setting is unrealistic, as discussed in §3.4.2.

All of the theory works cited above, including PMW, suffer from another limitation: they

operate on static datasets and do not support new data arriving into the system. PMWG [107] is

an extension of PMW for dynamic “growing” databases, but operates in a setting where all queries

request the entire database. This precludes the use of parallel composition for queries that access

less than the entire database, such as queries over windows of time. Other algorithms focus on

continuously releasing specific statistics over a stream, such as the streaming counter [108] that

inspired our tree structure, and extensions to top-k and histogram queries [109]. These works do

not support arbitrary linear queries, and they answer all predefined queries at every time step while

we only pay budget for queries that are actually posed by analysts.

78



3.10 Conclusion

Turbo is a caching layer for differentially-private databases that increases the number of linear

queries that can be answered accurately with a fixed privacy guarantee. It employs a PMW, which

learns a histogram representation of the dataset from prior query results and can answer future

linear queries at no additional privacy cost once it has converged. To enhance the practical effec-

tiveness of PMWs, we bypass them during the privacy-expensive training phase and only switch to

them once they are ready. This transforms PMWs from ineffective to very effective compared to

simpler cache designs. Moreover, Turbo includes a tree-structured set of histograms that supports

timeseries and streaming use cases, taking advantage of fine-grained privacy budget accounting

and warm-starting opportunities to further increase the number of answered queries.

79



Chapter 4: Cookie Monster: Efficient On-device Budgeting for

Differentially-Private Ad-Measurement Systems

4.1 Overview

With the impending removal of third-party cookies from major browsers and the introduction

of new privacy-preserving advertising APIs, the research community has a timely opportunity to

assist industry in qualitatively improving the Web’s privacy. This paper discusses our efforts,

within a W3C community group, to enhance existing privacy-preserving advertising measurement

APIs. We analyze designs from Google, Apple, Meta and Mozilla, and augment them with a more

rigorous and efficient differential privacy (DP) budgeting component. Our approach, called Cookie

Monster, enforces well-defined DP guarantees and enables advertisers to conduct more private

measurement queries accurately. By framing the privacy guarantee in terms of an individual form

of DP, we can make DP budgeting more efficient than in current systems that use a traditional

DP definition. We incorporate Cookie Monster into Chrome and evaluate it on microbenchmarks

and advertising datasets. Across workloads, Cookie Monster significantly outperforms baselines

in enabling more advertising measurements under comparable DP protection.

4.2 Introduction

Web advertising is undergoing significant changes, presenting a major opportunity to enhance

online privacy. For years, numerous entities, often without users’ knowledge, have exploited Web

protocol vulnerabilities, such as third-party cookies and remote fingerprinting, to track user activity

across the Web. This data has been used to target individuals with ads and assess ad campaign

performance. Two key shifts are reshaping this landscape. First, major browsers are making it

more difficult to track users across websites. Apple’s Safari and Mozilla’s Firefox blocked third-

80



party cookies in 2019 [110] and 2021 [111], respectively, while Google Chrome will soon facilitate

users’ choice of disabling these cookies [112]. Additionally, browsers are strengthening defenses

against IP tracking [113] and remote fingerprinting [111, 114, 115].

Second, acknowledging the critical role online advertising plays in the Web economy – and the

impossibility of perfect tracking protection – browsers are introducing explicit APIs to measure

ad effectiveness and enhance ad delivery while protecting individual privacy. Early designs, like

Apple’s PCM [116] and Google’s FLoC [117], focused on intuitive but not rigorous privacy meth-

ods, resulting in limited adoption due to poor utility [118] or privacy [119]. Recently, browsers

have shifted to theoretically-sound privacy technologies – such as differential privacy (DP), se-

cure multi-party computation (MPC), and trusted execution environments (TEEs) – in the hope of

achieving better privacy-utility tradeoffs.

However, substantial challenges remain in implementing these privacy technologies at Web

scale. The research community now has a timely opportunity – and responsibility – to assist indus-

try in refining these technologies to deliver both strong privacy protections and meet advertising

needs. Only by addressing these challenges can we hope to drive adoption of privacy-preserving

APIs, remove incentives for individual tracking, and meaningfully improve Web privacy.

This paper focuses on our efforts to analyze and enhance current ad-measurement APIs (a.k.a.,

attribution-measurement APIs), which enable advertisers to measure and optimize the effectiveness

of their ad campaigns based on how often people who view or click certain ads go on to purchase

the advertised product. While separate ad-targeting APIs are also under development [120], we

concentrate on ad-measurement APIs.

The W3C’s Private Advertising Technology Community Group (PATCG) [121] is working

towards an interoperable standard for private ad-measurement APIs. Leading proposals include

Google’s Attribution Reporting API (ARA) [122], Meta and Mozilla’s Interoperable Private Attri-

bution (IPA) [123], Apple’s Private Ad Measurement (PAM) [124], and a hybrid proposal [125].

Our first contribution is a systematization of these proposals into abstract models, followed by a

comparative analysis to identify opportunities for improving their privacy-utility tradeoffs (§4.3).

81



We focus on the differential privacy (DP) component, present in all four systems. DP is used

to ensure advertisers cannot learn too much about any single user through measurement queries.

Each system employs a privacy loss budget, accounting for the privacy loss incurred by each query.

Once the budget is exhausted, further queries are blocked. This process, called DP budgeting, is

handled centrally in IPA, but in the other systems, DP budgeting is done separately by each device.

We observe that this on-device budgeting cannot be formalized under standard DP and instead

requires a variant, individual DP (IDP) or personalized DP [126], for proper formalization. Our

formal modeling and analysis of on-device budgeting under IDP form our second contribution

(§4.5).

Through our IDP formalization, we uncover optimizations that enhance utility in on-device

budgeting systems, allowing advertisers to execute more accurate queries under the same DP bud-

get. IDP enables devices to maintain their own, separate DP guarantees and to account for privacy

loss based on the device’s data. This lets a device deduct zero privacy loss if it lacks relevant data

for a query. Notably, one such optimization is already used in ARA, though without formal jus-

tification. Our third contribution is providing formal proof for this optimization as well as other,

novel optimizations that can further improve the privacy-utility tradeoff.

Our final contribution is a prototype implementation of our optimized DP budgeting system,

called Cookie Monster, integrated into ARA within Chrome (§4.4, §4.6). Cookie Monster is the

first ad-measurement system to enforce a fixed, user-time DP guarantee [127], improving on the

event-level guarantees of ARA. We evaluate Cookie Monster on microbenchmarks and advertising

datasets (§5.6), showing that it delivers ×1.16–2.88 better query accuracy compared to a user-

time version of ARA and substantially outperforms IPA, which exhausts its budget very early.

Our prototype is available at https://github.com/columbia/cookiemonster and has

been incorporated into a W3C draft report on privacy-preserving attribution from Mozilla [128].

82

https://github.com/columbia/cookiemonster


4.3 Review of Ad-Measurement APIs

We review the designs of privacy-preserving ad-measurement systems considered for a poten-

tial interoperable standard at PATCG: Meta and Mozilla’s IPA, Google’s ARA, Apple’s PAM, and

Meta and Mozilla’s Hybrid. ARA and IPA are implemented; PAM and Hybrid exist only as design

docs. We abstract their functionality for comparison and articulate the improvement opportunity

addressed in this paper.

4.3.1 Example Scenario

We use a fictitious scenario to illustrate the motivation and requirements of ad-measurement

systems from two key perspectives: Ann, a web user, and Nike, an advertiser measuring ad cam-

paign effectiveness. While real-world players like first-party ad platforms (e.g., Meta) and ad-techs

(e.g., Criteo) typically run measurement queries on behalf of advertisers, for simplicity, we assume

the advertiser performs its own measurements.

User perspective. Ann visits various publisher sites, such as nytimes.com and facebook.com,

where she sees ads. She understands that ads fund the free content she enjoys and occasionally

finds them useful, like when she clicked on a Nike ad for running shoes on nytimes.com and later

purchased a pair. However, Ann values her privacy and expects no cross-site tracking, meaning

no site should track her across different websites. She also expects limited within-site linkability,

preventing even a single site from linking her activities across cookie-clearing browsing sessions

(e.g., incognito sessions). Ann accepts that some privacy loss is necessary for effective advertising

but expects it to be explicitly bounded and transparently reported by her browser.

Fig. 4.1 shows a screenshot of the privacy loss dashboard we developed for Cookie Monster in

Chrome, where Ann can monitor the privacy loss resulting from various sites and intermediaries

querying her ad interactions, including impressions (e.g. ad views and clicks) and conversions

(e.g. purchases, cart additions). While Ann may not grasp the concept of differential privacy that

underpins the reported privacy loss, she trusts her browser to enforce protective bounds on it.

83



Mar 25-31 Apr 1-7

0.2

0.4

0.6

0.8

1.0

0.0
Mar 18-24 Apr 8-14

Fig. 4.1: Privacy loss dashboard. Screenshot from our Chrome implementation of Cookie Mon-
ster (minimally edited for visibility).

Advertiser perspective. Nike runs multiple ad campaigns for its running shoes, some emphasiz-

ing shock-absorbing technology, others focusing on aesthetics. Nike seeks to understand which

campaigns perform best across different demographics and contexts (e.g., publisher sites, content

types). In the past, Nike used third-party cookies and device fingerprinting1 to track individuals

from ad impressions to purchases, attributing purchase value using an attribution function, such

as last-touch (giving all credit to the last impression) or equal credit (splitting value among recent

impressions). Using such attribution reports from many users, Nike measured the purchase value

attributed to different campaigns and optimized future ad targeting.

Now that third-party cookies are disabled on multiple browsers and fingerprinting is harder,

Nike is transitioning to ad-measurement APIs, expecting similar attribution measurements with

comparable accuracy. Nike understands that ad measurement has always involved some impreci-

sion (e.g., due to cookie clearing or fraud), so its expectation of accuracy from these APIs is not

stringent. Nike plans to conduct numerous attribution measurements over time to adjust to chang-

1The example is fictitious, as are claims regarding the companies mentioned.

84



(c) On-device budgeting architecture (ARA, PAM, Hybrid)

DP query execution

MPC

DP budgeting

attribution function

Querier 
(Publisher/
Advertiser/
Ad-tech)

② encrypted I/C 
match keys

③ batch of encrypted 
I/C match keys,

query, ε

MPC/TEE

Querier 
(Publisher/
Advertiser/
Ad-tech)

② encrypted 
attribution 

reports (ε as 
auth data)

① impression (I), 
conversion (C) events

PublishersPublishers PublishersAdvertisers
Publisher

sAd-techs

Devices

impressions, 
conversions

attribution reports 
(encrypted),
  queries

(a) Common architecture

Ad-Measurement API
(ARA, IPA, PAM, Hybrid)

Runtimes

MPC
/TEE

on-deviceattribution function

DP budgeting

Functions

DP query execution

(b) Off-device budgeting architecture (IPA)

IPAIPAIPA

εG

DP query execution

I/C events

attribution 
function

εG
1

DP 
budgeting

③  batch of encrypted 
attribution reports,

query, ε

I/C events

attribution 
function

DP 
budgeting

I/C events

attribution 
function

DP 
budgeting

εG
2

εG
3

① impression (I), 
conversion (C) events
(ε specified for C       )

Fig. 4.2: Architectures of ad-measurement systems. Common structure, with a key difference in
where attribution and DP budgeting occur: off-device (IPA) vs. on-device (ARA, PAM, Hybrid).

ing user preferences and product offerings. These measurements are single-advertiser summation

queries, a key query type that ad-measurement systems aim to support.

4.3.2 Ad-Measurement Systems

IPA, ARA, PAM, and Hybrid aim to balance user privacy with utility for advertisers and other

Web-advertising parties (referred to as queriers). Utility is defined as the number of accurate

measurement queries a querier can execute under a privacy constraint. Despite variations in termi-

nology, privacy properties, and mechanisms, these systems share key similarities. A commonality

is the use of DP techniques, with ARA focusing on event-level DP, while IPA, PAM, and Hybrid

emphasize user-time DP. This paper focuses on user-time DP, applied per querier site, as defined

in §4.5.2.

Common architecture. The high-level architecture of all four systems is similar (see Fig. 4.2a).

All systems act as intermediaries between user devices and sites. Previously, these parties col-

lected impression and conversion events directly, matched them through third-party cookies, per-

formed attribution, and aggregated reports. To break these privacy-infringing direct data flows,

ad-measurement systems interpose a DP querying interface over impression and conversion data.

All systems include three core components: (1) the attribution function, which matches con-

versions to relevant impressions on the same device and assigns conversion value to impressions

based on an attribution logic like last-touch; (2) DP query execution, which aggregates reports and

85



adds noise for DP guarantees; and (3) DP budgeting, which tracks privacy loss from each query

using DP composition and enforces a maximum on total privacy loss, called a DP budget.

A key difference is where these components are executed. In IPA, all components run off-

device within an MPC involving multiple helper servers. In ARA, PAM, and Hybrid, attribution

and DP budgeting occur on-device, while DP query execution is off-device, in an MPC (PAM,

Hybrid) or TEE (ARA). The MPC/TEE is trusted not to leak inputs, and the devices are trusted to

safeguard their own data. The placement of attribution and DP budgeting is crucial for this paper.

Off-device budgeting (IPA). Fig. 4.2b illustrates IPA, which operates in a standard centralized-

DP setting. The MPC handles all three functions, while the device’s role is limited to generating

a match key to link impressions and conversions. For example, when nytimes.com sends an ad for

Nike shoes to Ann’s device 1⃝, the device responds with a match key, secret-shared and encrypted

toward the MPC helper servers 2⃝. When Ann later purchases the shoes on nike.com, her device

sends the same key to the MPC, also secret shared and encrypted toward the helpers. Periodically,

NYtimes sends batches of encrypted impression match keys to Nike, who cannot directly match

these with its conversion match keys due to the encryption and secret sharing. Instead, Nike collects

its conversion match keys and NYtimes’ impression match keys into batches and submits them

to the MPC, specifying the privacy budget 𝜖 to spend on the query 3⃝. The MPC checks the

budget, matches impressions to conversions, applies the attribution function with an 𝐿1 cap for

sensitivity control, aggregates the data, and adds DP noise to enforce 𝜖-DP. The MPC tracks and

deducts Nike’s privacy budget, refusing further queries once the budget is exhausted until the per-

site budget is “refreshed” (e.g., daily).

On-device budgeting (ARA, PAM, Hybrid). Fig. 4.2c shows the on-device architecture, which

operates in a rather non-standard DP setting. While DP query execution occurs centrally on the

MPC or TEE, attribution and DP budgeting are done separately on each device. Every device

maintains a timeseries database of impression and conversion events. When Ann sees an ad for

Nike on nytimes.com, her device records it locally 1⃝. Later, when she buys shoes on nike.com,

Nike requests an attribution report from her device. Ann’s device checks its database for relevant

86



impressions, applies the attribution function with an 𝐿1 cap, and sends an attribution report 2⃝,

either secret-shared and encrypted toward the helper parties (for MPC) or directly encrypted to a

TEE. Nike aggregates attribution reports from multiple users, submits them to the MPC or TEE,

which performs DP aggregation, adding noise based on Nike’s 𝜖 parameter 3⃝. The MPC/TEE

ensures each report is used only once for sensitivity control.

DP budgeting in on-device systems differs from centralized DP by accounting for privacy loss

when the advertiser requests a conversion report, prior to query execution. When Nike requests a

report, it specifies the 𝜖 parameter for the future query. The device checks Nike’s budget locally,

generates and encrypts the report (with secret sharing if MPC is used), includes 𝜖 as authenticated

data, and deducts 𝜖 from Nike’s local budget. Since the budget is spent at the device, each report

can only be used once, so the device includes a unique nonce with every report in authenticated

data and the MPC/TEE tracks report nonces to prevent reuse.

Threat models. The threat models differ based on whether an MPC or TEE is used. In all cases,

MPC/TEE systems are trusted to protect inputs and intermediate states. For MPC, the deploy-

ment models assume either a three-party, malicious, honest-majority MPC protocol (IPA, Hy-

brid) [123] or a two-party malicious protocol (PAM). The querier selects MPC parties from a

browser-configured list, typically relatively trusted Web organizations like Cloudflare. The device

secret shares the report and encrypts it toward the chosen parties after report generation.

4.3.3 Improvement Opportunity

On-device budgeting systems offer certain advantages over off-device systems but also present

a key challenge, which we aim to address. First, on-device systems can enhance user transparency

by putting the user’s device in control of per-site budgets and the tracking of privacy losses incurred

by the user due to specific attribution reports the device releases to various querier sites, as seen

in the Cookie Monster privacy loss dashboard (Fig. 4.1). In contrast, in IPA, the device can only

track the encrypted match keys returned by the device, not the specific privacy losses users incur

through subsequent matching and aggregation in the MPC.

87



Second, on-device systems allow for finer-grained budgeting. While off-device systems en-

force a global site-wide budget 𝜖𝐺 , on-device systems maintain a per-device budget 𝜖𝐺
𝑑

, which is

only consumed for queries involving that device. This granularity enables Nike, for instance, to

continue querying other users’ reports even if it exhausts Ann’s budget. However, this behavior

requires formalization under the less standard (but equally protective) privacy definition known

as individual DP (IDP) [126], which allows enforcement of a separate privacy guarantee for each

device.

The challenge lies in formalizing the data, query, and system model that capture the behavior

of on-device ad-measurement systems, and in proving its IDP properties. This formalization then

opens opportunities for further optimizing DP budgeting in on-device systems by deducting privacy

loss based on the device’s data. However, it also requires keeping the remaining privacy budgets on

each device private, as revealing these budgets leaks data. This paper presents a formally-justified,

practical and efficient DP budgeting module, Cookie Monster, designed for on-device systems like

ARA, PAM, and Hybrid, which maximizes utility while maintaining DP guarantees.

4.4 Cookie Monster Overview

The design of Cookie Monster is guided by three principles. First, it must enforce well-defined

DP guarantees at an industry-accepted granularity. We adopt a fixed “user-time” DP guarantee for

each querier, supported by IPA, PAM, and Hybrid, and recognized by Apple, Meta, and Mozilla as

the minimum acceptable. Second, Cookie Monster must support similar use cases and queries as

existing systems.

Finally, Cookie Monster must not introduce new vectors for illicit tracking, given increasing

browser efforts to prevent tracking both across sites and within-site across cookie refreshes.

Fig. 4.3 presents Cookie Monster’s architecture with an example execution overlaid. We de-

scribe each aspect below.

88



D
P 

bu
dg

et
in

g 
(p

er
 q

ue
rie

r)

D
P 

bu
dg

et
in

g 
(p

er
 q

ue
rie

r)
at

tr
ib

ut
io

n 
fu

nc
tio

n
de

vi
ce

- 
ep

oc
h 

ev
en

ts
 

da
ta

D
P 

bu
dg

et
in

g 
(p

er
 q

ue
rie

r)

Publisher 
(nytimes.

com)

Publisher 
(bbc.com)

Price:$60-100

Advertiser 
(nike.com)

time 
(epochs)Dd

e1 Dd
e2 Dd

e3 Dd
e4

I1 I2 C1

@e1: I1
Ad

@e4: C1, with params:
output_dimension m=2,
attribution_window_epochs E=[e1…e4],
conversion_value=70,
max_conversion_value=100,
ε=0.01         

@e2: I2

time 
(epochs)

εG
d

Algorithm (summary): check for relevant 
impressions in epochs E with sufficient budget 

ε*70/100, deducting individual privacy loss in each 
epoch with relevant impressions.

individual 
device-epoch 

privacy loss
(nike.com)

encrypted 
attribution 
report
ρ={(I2,70),
(0,0)}

Ad

Cookie Monster (on device d)
(guarantee: individual device-epoch εG

d-DP 
for each querier)

Fig. 4.3: Cookie Monster architecture and example execution (red overlay). §4.4.1 describes
the architecture and §4.4.2 the example execution. Notation: @𝑒1 : 𝐼1 indicates that Ann’s device
receives an impression 𝐼1 of a Nike shoe ad from nytimes.com in epoch 𝑒1. Red dotted arrows
show the attribution function’s search for impressions over epochs 𝑒1 − 𝑒4.

4.4.1 Architecture

Cookie Monster adopts on-device budgeting, similar to ARA, PAM, and Hybrid. DP query

execution occurs off device, in an MPC or TEE, trusted not to leak inputs or intermediate states.

Since Cookie Monster does not modify this component, it is omitted from Fig. 4.3; we think of

it as a trusted aggregation service. Cookie Monster modifies the on-device component, based on

ARA in our prototype. While the external APIs remain unchanged, we modify: (1) the on-device

events database to support a “user-time” guarantee, and (2) the internals of the attribution function

89



and DP budgeting to enforce this guarantee efficiently.

Cookie Monster enforces individual device-epoch 𝜖𝐺
𝑑

-DP for each querier site, formally de-

fined in §4.5.2. This device-epoch granularity aligns with traditional “user-time” from DP lit-

erature [127, 9, 8], though we rename it to reflect that a user’s complete activity is not directly

observable by a device or browser, the scope in which Cookie Monster operates. We partition

the on-device events database into time-based epochs, such as weeks or months. In each epoch

𝑒, device 𝑑 collects impression and conversion events into a device-epoch database 𝐷𝑒
𝑑
. Queriers

submit multiple queries over time, accessing data from one or more epochs. For each epoch 𝑒,

Cookie Monster ensures that no querier learns more about device 𝑑’s data in 𝑒 than permitted by

an 𝜖𝐺
𝑑

-DP guarantee.

The DP budgeting in Cookie Monster is implemented using privacy filters [129], which ensure

that the cumulative privacy loss from a series of queries does not exceed a pre-specified budget.

For each querier, Cookie Monster maintains multiple filters – one for each device-epoch database.

Fig. 4.3 shows these filters for nike.com. Each filter is initialized with a privacy budget 𝜖𝐺
𝑑

and

monitors cumulative privacy loss for queries involving data from that epoch.

In on-device systems, privacy loss is accounted for when the attribution report is generated, not

when the query is executed. The attribution function is responsible for generating these reports.

Upon a conversion, the function checks for relevant impressions in the device-epoch databases

within a specified attribution window. Privacy filters prevent use of impression data from epochs

with insufficient budget.

For epochs with sufficient budget, the filter allows access to the device-epoch data and deducts

privacy loss. Under standard centralized DP, this loss would be 𝜖 , the DP parameter enforced later

by the MPC or TEE during aggregation. However, our theoretical analysis of on-device budget-

ing reveals that viewing the system under an individual-DP lens opens opportunities to optimize

privacy accounting, often allowing deductions of “less than 𝜖 .” §4.5 outlines our theoretical anal-

ysis, a major contribution in this paper. We dedicate the remainder of this section to providing the

systems view of our theory, including an execution example (§4.4.2), Cookie Monster’s algorithm,

90



which is backed by our theory (§4.4.3), and a discussion on mitigating IDP-induced bias (§4.4.4).

4.4.2 Execution Example

The red overlay in Fig. 4.3 illustrates the attribution function’s operation for the example from

§4.3.1. Ann receives two impressions of Nike shoe ads: one in epoch 𝑒1 and another in 𝑒2, with no

impressions in 𝑒3. Later, in epoch 𝑒4, Ann buys the shoes, and nike.com registers a conversion 𝐶1.

It requests an attribution report with parameters: the set of epochs 𝐸 to search for impressions, the

maximum number of impressions 𝑚 to attribute value to, the conversion value ($70), and 𝜖 , the

privacy parameter enforced by the MPC or TEE when executing the aggregation query.

The shoes’ price ranges by color, with a maximum of $100. While Ann’s conversion is $70,

Nike’s query will include conversions up to $100. Thus, for a summation query with the Laplace

mechanism, the noise added to the aggregate depends on 100/𝜖 , where 100 is the global sensitivity

of the summation (i.e., the largest change any device-epoch can contribute). Ann, with a purchase

of $70, can only contribute up to $70 across her device-epochs.

Here, IDP lets us optimize privacy loss based on individual sensitivity, the maximum change

that a specific device-epoch can make on the query output. In this case, Ann’s device only deducts

𝜖′ = $70/$100 ∗ 𝜖 from the privacy filters of the epochs in the attribution window 𝐸 . This is one

optimization enabled by IDP. Another is that if no relevant impressions exist in an epoch (e.g.,

𝑒3 in Fig. 4.3), we need not deduct anything, since the individual sensitivity for that epoch is 0

and thus its privacy loss is also 0. §4.5.3 formalizes global and individual sensitivities and details

further optimizations.

In Fig. 4.3, Cookie Monster’s attribution function checks epochs 𝑒1 − 𝑒4 for relevant impres-

sions. In 𝑒1, access to data 𝐷𝑒1
𝑑

is denied because the filter has exhausted nike.com’s budget. In

𝑒2, the filter allows access, and a relevant impression 𝐼2 is found, deducting 𝜖′ (shown as a red

square in the 𝑒2 filter). In 𝑒3, there is budget, but no relevant impression is found, so no deduction

occurs. Finally, in 𝑒4, where the conversion happened but no impression occurred, then through

a formalization of publicly available information that we support (§4.5.1), we can justify that no

91



privacy loss occurs in 𝑒4.

The final attribution report assigns the $70 value to the single impression 𝐼2 and includes a null

value for the second attribution, as Nike requested two. If no impressions were found, or Nike also

ran out of budget in 𝑒2, the attribution function would return a report with two null values to avoid

leaking information about ad presence.

4.4.3 Algorithm

Listing 4.1 shows how Cookie Monster computes an attribution report.

The compute_attribution_report function receives an attribution_request, which en-

capsulates all querier-provided parameters, sanitized by the device. Key parameters include:

1. the window of epochs to search for relevant events (epochs parameter);

2. the requested privacy budget (requested_epsilon);

3. logic for selecting relevant events (select_relevant_events);

4. the attribution policy, such as last-touch or equal-credit (compute_attribution);

5. two global sensitivity parameters: report_global_sensitivity, the maximum change

a device-epoch can make to the output of the report generation function, and

query_global_sensitivity, the maximum across all devices and reports;

6. p-norm, based on the DP mechanism in MPC/TEE, e.g., 1-norm for Laplace and 2-norm for

Gaussian.

All parameters follow a predefined protocol, and while the algorithm is general enough to

handle different mechanisms and p-norm sensitivities, our DP result (Thm. 7) focuses on pure DP,

assuming the Laplace mechanism and 𝐿1 sensitivity.

Computing an attribution report consists of four steps.

92



Step 1: Cookie Monster invokes the querier-provided select_relevant_events to select

relevant events from each separate epoch in the attribution window, such as impressions with a

specific campaign ID.

Step 2: For each epoch, Cookie Monster computes the individual privacy loss resulting from

the querier’s query, following the IDP optimizations in Thm. 10. Three cases:

1. if the epoch has no relevant events, privacy loss is zero;

2. if a single epoch is considered, privacy loss is proportional to the 𝐿𝑝-norm of the attribution

function output;

3. if multiple epochs are considered, privacy loss is proportional to the report’s global sensitiv-

ity.

The privacy loss is scaled by requested_epsilon and the query’s global sensitivity. In §4.4.2,

the report’s global sensitivity is 70, and the query’s global sensitivity is 100.

Step 3: For each epoch, we attempt to deduct the computed privacy loss from the querier’s

budget for that epoch, ensuring atomic, thread-safe checks. If the filter has sufficient budget, the

epoch’s events are used for attribution; otherwise, they are dropped. The justification for dropping

contributions is provided in Theorem 7.

Step 4: The attribution function is applied across events from all epochs, following the querier’s

policy. The device ensures that the attribution computation: (1) respects the querier’s specified

report_global_sensitivity by clipping the attribution histogram to ensure its 𝐿𝑝-norm is ≤

report_global_sensitivity, and (2) produces encrypted outputs indistinguishable from oth-

ers. For (2), the device ensures a fixed dimension for the attribution report by padding or dropping

elements. For instance, if only one relevant impression is found but two are requested, the output

vector is padded with a null entry.

For the example in §4.4.2, this algorithm is invoked with an attribution_request where

querier_site = “nike.com,” epochs = [𝑒1 − 𝑒4], report_global_sensitivity = 70,

query_global_sensitivity = 100. Function select

93



_relevant_events filters impressions by campaign ID, pnorm returns the L1-norm of the attri-

bution histogram, and compute_attribution divides the conversion value of 70 across at most

two impressions, padding with nulls as needed. This attribution function has sensitivity 70.

# Global variables: events_database, privacy_filters.

def compute_attribution_report(attribution_request):

relevant_events_per_epoch = {}

for epoch in attribution_request.epochs:

relevant_events = attribution_request.select_relevant_events(events_database[epoch]) # Step 1

individual_privacy_loss = compute_individual_privacy_loss(relevant_events, attribution_request) # Step 2

filter_status = privacy_filters[attribution_request.querier_site][epoch].check_and_consume(individual_privacy_loss) #

Step 3

if filter_status == "out_of_budget":

relevant_events = {}

relevant_events_per_epoch[epoch] = relevant_events

return attribution_request.compute_attribution(relevant_events_per_epoch) # Step 4

def compute_individual_privacy_loss(epoch_events, attribution_request):

if epoch_events == {}: # Case 1 in Theorem 4

return 0

if len(attribution_request.epochs) == 1: # Case 2 in Theorem 4

individual_sensitivity = attribution_request.pnorm(attribution_request.compute_attribution(relevant_events))

else: # Case 3 in Theorem 4

individual_sensitivity = attribution_request.report_global_sensitivity

return attribution_request.requested_epsilon * individual_sensitivity / attribution_request.query_global_sensitivity

Code Listing 4.1: Cookie Monster Algorithm

4.4.4 Bias Implications of IDP

The execution example and algorithm demonstrate Cookie Monster’s budget savings, con-

firmed in Section 5.6, where we show that these savings allow more accurate queries than ARA

and IPA under the same privacy guarantees. However, IDP can introduce bias into query results.

Since privacy loss and remaining budgets depend on data, they must remain hidden from adver-

tisers. When a device exhausts its budget for an epoch, it continues participating in queries with

“null” data, protecting privacy but potentially introducing bias. For example, Nike’s report should

have included two impressions, but running out of budget in epoch 𝑒1 meant 𝐼1 wasn’t returned,

altering the report undetectably.

This bias is a general challenge for all systems operating on IDP, including all existing ad-

measurement systems with on-device budgeting – although this challenge is not always acknowl-

94



edged or handled. Indeed, ARA incorporates code to send null reports when budgets are exhausted

and its documentation states that these nulls must be sent to preserve privacy [130]. Such nulls

would add bias to query results. In absence of proper IDP formulation, a rudimentary justification

we have seen for sending nulls in on-device systems is to prevent revealing budget exhaustion,

which could facilitate remote fingerprinting, a concern actively addressed by browsers. Our paper

reveals a deeper issue: these systems inherently operate under IDP, and IDP systems must keep

budgets hidden, which can lead to bias. Acknowledging this bias opens pathways to mitigate it.

Any (DP or IDP) system must tolerate some error. In ad measurement, high error tolerance is

common due to factors like tracking inaccuracies and fraud. The goal is to equip queriers with tools

that rigorously bound errors from both DP noise and IDP bias, allowing for informed decision-

making. Previous work on centralized-budgeting IDP has developed methods to bound bias using

global sensitivity [131] and periodic DP counting queries [132, 131]. These approaches require

adaptation to on-device budgeting, given the lack of centralized privacy-loss tracking and non-i.i.d.

report sampling. We leave it for future work to develop advanced bias-management tools and here

only present a rudimentary approach, which we implement in Cookie Monster and evaluate in

§4.7.5 as a proof-of-concept that bias can be effectively managed in on-device budgeting systems.

Our approach adds a side query to each attribution query, which bounds potential error from

out-of-budget epochs. With each report, the querier requests a boolean flag indicating whether the

report could be affected by an out-of-budget epoch. This flag is bundled with the attribution report,

secret-shared, and encrypted toward the MPC/TEE. The querier receives a DP-aggregated count of

how many reports could be erroneous out of its total batch. With the count, the querier computes a

high-probability upper bound on the error from both DP noise and IDP bias. The querier can then

filter the results of its queries based on this error bound, ignoring those with unacceptable error.

Consider last-touch attribution. If no epoch in the attribution window is out of budget or an

impression is found in a later epoch, the device returns a 0-valued error assessment, indicating no

bias. If no impression is found in epochs later than the out-of-budget epoch, the device returns a 1-

valued error assessment, signaling potential bias. This information is encrypted and only accessible

95



to the querier after DP aggregation by the MPC/TEE.

This mechanism lets queriers manage IDP-induced error rigorously, though it consumes addi-

tional privacy budget. In Steps 3 and 4 of Listing 4.1, each epoch that is not out of budget must

deduct privacy loss for the side query. Fortunately, since the side query is a count query with lower

sensitivity than the main query, Cookie Monster’s optimizations still provide benefits.

Our evaluation shows that even with bias detection, Cookie Monster consumes less privacy and

incurs lower errors compared to ARA and IPA (§4.7.5).

4.5 Formal Modeling and Analysis

This section outlines the theoretical analysis behind Cookie Monster’s design, divided into

three parts: §4.5.1 introduces a formal model that captures the behavior of on-device budgeting

systems, including Cookie Monster but also ARA and PAM. §4.5.2 analyzes this model under

IDP, proving that Cookie Monster bounds cross-site leakage and within-site linkability. Finally,

§4.5.3 details and justifies the optimizations enabled by IDP, both ones inherently employed in

ARA and new ones that our theory uncovers.

4.5.1 Formal System Model

To rigorously analyze privacy properties and identify optimization opportunities in on-device

budgeting systems for ad measurement, we must establish a formal model of their behavior. Cur-

rent ad-measurement systems lack such models, preventing formal analysis or justification of opti-

mizations. Although our model is tailored to Cookie Monster, it can also serve as a foundation for

analyzing other systems.

We define the data and queries Cookie Monster operates on, from the perspective of a fixed

querier (e.g., advertiser, publisher, or ad-tech).

96



Data Model

Our data model is based on conversion and impression events collected by user devices and

grouped by the time epoch in which they occurred. We view the data available to queriers as a

database of such device-epoch groups of events, coming from many devices and defined formally

as follows.

Conversion and impression events (F). Consider a domain of impression events I and a domain

of conversion events C. A set of impression and conversion events 𝐹 is a subset of I ∪ C. The

powerset of events is P(I ∪ C) := {𝐹 : 𝐹 ⊂ I ∪ C}.

Device-epoch record (x). Consider a set of epochs E and a set of devicesD. We define the domain

for device-epoch records X := D × E × P(I ∪ C). That is, a device-epoch record 𝑥 = (𝑑, 𝑒, 𝐹)

contains a device identifier 𝑑, an epoch identifier 𝑒, and a set of impression and conversion events

𝐹.

Database (D). A database is a set of device-epoch records, 𝐷 ⊂ X, where a device-epoch appears

at most once. That is, ∀𝑑, 𝑒 ∈ D × E, |{𝐹 ⊂ I ∪ C : (𝑑, 𝑒, 𝐹) ∈ 𝐷}| ≤ 1. We denote the set of all

possible databases by D. This will be the domain of queries in Cookie Monster. Given a database

𝐷 ∈ D and 𝑥 ∈ X, 𝐷 + 𝑥 denotes that device-epoch record 𝑥 is added to database 𝐷 that initially

did not include it.

Device-epoch events data (De
d, DE

d ). Given a database 𝐷 ∈ D, we define 𝐷𝑒
𝑑
⊂ I ∪ C as 𝐷𝑒

𝑑
= 𝐹

if there exist (a unique) 𝐹 such that (𝑑, 𝑒, 𝐹) ∈ 𝐷, and 𝐷𝑒
𝑑
= ∅ otherwise. Think of this as the

event data of device 𝑑 at epoch 𝑒. We also define 𝐷𝐸
𝑑

:= (𝐷𝑒
𝑑
)𝑒∈𝐸 ∈ P(I ∪ C) |𝐸 | the events of

device 𝑑 over a set of epochs 𝐸 (typically a contiguous window of epochs).

Public events (𝑃). A key innovation in Cookie Monster’s data model is to support incorporation of

side information that can be reliably assumed as available to the querier. For example, an advertiser

such as Nike can reliably know when someone places a product into a cart (i.e, a conversion

occurred), though depending on whether the user is logged in or not, Nike may or may not know

who did that conversion.

97



We model such side information as a domain of public events for a querier, denoted 𝑃 ⊆ I∪C.

𝑃 is a subset of all possible events, that will be disclosed to the querier if they occur in the system.

We do not assume that the querier knows the devices on which events in 𝑃 occur, and different

queriers can have knowledge about different subsets of events. Such side information is typically

not modeled explicitly in DP systems, as DP is robust to side information. Cookie Monster also

offers such robustness to generic side information. However, we find that additionally modeling

the “public” events known to the querier has two key benefits. First, it opens DP optimizations that

leverage this known information to consume less privacy budget. Second, it lets us formally define

within-site linkability and adapt our design to provide a DP guarantee against such linkability.

Query Model

In on-device systems, queries follow a specific format: first the attribution function runs locally

to generate an attribution report, on a set of devices with certain conversions; then, the MPC sums

the reports together and returns the result with DP noise. Formally, we define three concepts:

attribution function, attribution report, and query.

Attribution function, a.k.a. attribution (A). Fix a set of events relevant to the query 𝐹𝐴 ∈

P(I ∪ C), and 𝑘, 𝑚 ∈ N∗ where 𝑘 is a number of epochs. An attribution function is a function

𝐴 : P(I ∪ C)𝑘 → R𝑚 that takes 𝑘 event sets 𝐹1, . . . , 𝐹𝑘 from 𝑘 epochs and outputs an 𝑚-

dimensional vector 𝐴(𝐹1, . . . , 𝐹𝑘 ), such that only relevant events contribute to 𝐴. That is, for all

(𝐹1, . . . , 𝐹𝑘 ) ∈ P(I ∪ C)𝑘 , we have:

𝐴(𝐹1, . . . , 𝐹𝑘 ) = 𝐴(𝐹1 ∩ 𝐹𝐴, . . . , 𝐹𝑘 ∩ 𝐹𝐴).

Attribution report, a.k.a. report (𝜌). This is where the non-standard behavior of on-device bud-

geting systems, which deduct budget only for devices with specific conversions, becomes appar-

ent. Intuitively, we might consider attribution reports as the “outputs” of an attribution function.

However, in the formal privacy analysis, we must account for the fact that only certain devices self-

select to run the attribution function (and thus deduct budget). We model this in two steps. First,

98



we introduce a conceptual report identifier, 𝑟, a unique random number that the device producing

this report generates and shares with the querier at report time.

Second, we define an attribution report as a function over the whole database 𝐷, that returns the

result of an attribution function 𝐴 for a set of epochs 𝐸 only for one specific device 𝑑 as uniquely

identified by a report identifier 𝑟. Formally, 𝜌𝑟 : 𝐷 ∈ D ↦→ 𝐴(𝐷𝐸
𝑑
). At query time, the querier

selects the report identifiers it wants to include in the query (such as those associated with a type of

conversion the querier wants to measure), and devices self-select whether to deduct budget based

on whether they recognize themselves as the generator of any selected report identifiers. Defining

attribution reports on 𝐷 lets us account for this self-selection in the analysis.

Query (Q). Consider a set of report identifiers 𝑅 ⊂ Z, and a set of attribution reports (𝜌𝑟)𝑟∈𝑅 each

with output in R𝑚. The query for (𝜌𝑟)𝑟∈𝑅 is the function 𝑄 : D → R𝑚 is defined as 𝑄(𝐷) :=∑
𝑟∈𝑅 𝜌𝑟 (𝐷) for 𝐷 ∈ D.

Instantiation in Example Scenario

To make our data and query models concrete, we instantiate the scenarios from §4.3.1.

User Ann’s data, together with that of other users, populates dataset 𝐷. Each device Ann owns has

an identifier 𝑑, and events logged from epoch 𝑒 go into observation 𝑥 = (𝑑, 𝑒, 𝐹). 𝐹 = 𝐼 ∪𝐶 is the

set of all events logged on that device during that epoch, including impressions (𝐼) shown to Ann

by various publishers, and conversions (𝐶) with various advertisers. Other devices of Ann, other

epochs, and other users’ device-epochs, constitute other records in the database.

The advertiser, Nike, can observe some of Ann’s behavior on its site. As a result, any such

behavior logged in 𝐶 on nike.com constitutes public information for querier Nike. This might

include purchases, putting an item in the basket, as well as associated user demographics (e.g.

when Ann is logged-in). However, Nike cannot observe impression or conversion events on other

websites. As a result, for this querier 𝑃 = CNike, which denotes all possible events that can be

logged on nike.com. Each actual event in this set (e.g., 𝐹 ∩ CNike, including Ann’s purchase) is

associated with an identifier 𝑟 in Cookie Monster. Using these identifiers, Nike can analyze the

99



relative effectiveness of two ad campaigns 𝑎1 and 𝑎2 on a given demographics for a product 𝑝,

such as the shoes Ann bought. First, Nike defines the set of relevant events for the shoe-buying

conversion; these are any impressions of 𝑎1 and 𝑎2. Nike uses these relevant events in an attribution

function 𝐴 : P(I ∪ C) |𝐸 | → R2 that looks at epochs in 𝐸 and returns, for example, the count (or

value) of impression events corresponding to ads 𝑎1 and 𝑎2. Third, using the set of report identifiers

𝑟 from purchases of 𝑝 from users in the target demographic, Nike constructs a query 𝑄 that will let

it directly compare the proportion of purchases associated with ad campaign 𝑎1 versus campaign

𝑎2.

4.5.2 IDP Formulation and Guarantees

With Cookie Monster’s data and query models defined, we now formalize and prove its privacy

guarantees using individual DP. After introducing our neighboring relation in §4.5.2, we briefly

define traditional DP for reference in §4.5.2, followed by individual DP in §4.5.2. In §4.5.2,

we state the IDP guarantees for Cookie Monster, which imply protection against both cross-site

tracking and within-site linkability.

Neighboring Databases

A DP guarantee establishes the neighboring database relation, determining the unit of protec-

tion. In our case, this unit is the device-epoch record. To account for the existence of public

event data (§4.5.1), we constrain neighboring databases to differ by one device-epoch record while

preserving public information. This ensures that a database containing an arbitrary device-epoch

record is indistinguishable from a database containing a device-epoch record with the same public

information but no additional data.

Neighboring databases under public information (𝐷 ∼𝑃𝑥 𝐷′). Given 𝐷, 𝐷′ ∈ D, 𝑥 = (𝑒, 𝑑, 𝐹) ∈

X and 𝑃 ⊂ I ∪ C, we write 𝐷 ∼𝑃𝑥 𝐷′ if there exists 𝐷0 ∈ D such that {𝐷, 𝐷′} = {𝐷0 +

(𝑒, 𝑑, 𝐹), 𝐷0+(𝑒, 𝑑, 𝐹∩𝑃)}. This definition corresponds to a replace-with-default definition [131]

combined with Label DP [133].

100



DP Formulation (for Reference)

In DP, noise must be applied to query results based on the query’s sensitivity–the worst-case

difference between two neighboring databases. Traditional DP mechanisms rely on global sensi-

tivity.

Global sensitivity. Fix a query 𝑞 : D → R𝑚 for some 𝑚 (so 𝑞 could be either a query or an

individual report in our formulation). We define the global 𝐿1 sensitivity of 𝑞 as follows:

Δ(𝑞) := max
𝐷,𝐷′∈D:∃𝑥∈X,𝐷′=𝐷+𝑥

∥𝑞(𝐷) − 𝑞(𝐷′)∥1. (4.1)

Device-epoch DP. When scaling DP noise to the global sensitivity under our neighboring defini-

tion, we can provide device-epoch DP. Fix 𝜖 > 0 and 𝑃 ⊂ I ∪ C. A randomized computation

M : D → R𝑚 satisfies device-epoch 𝜖-DP if for all databases 𝐷, 𝐷′ ∈ D such that 𝐷 ∼𝑃𝑥 𝐷′ for

some 𝑥 ∈ X, for any set of outputs 𝑆 ⊆ R𝑚 we have Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 Pr[M(𝐷′) ∈ 𝑆]. This is

the traditional DP definition, instantiated for our neighboring relation.

IDP Formulation

Since queries are aggregated from reports computed on-device with known data, we would

prefer to scale the DP noise to the individual sensitivity, which is the worst case change in a query

result triggered by the specific data for which we are computing a report.

Individual sensitivity. Fix a function 𝑞 : D → R𝑚 for some 𝑚 (so 𝑞 could be either a query or

an individual report in our formulation) and 𝑃 ⊂ I ∪ C. Fix 𝑥 ∈ X. We define the individual 𝐿1

sensitivity of 𝑞 for 𝑥 as follows:

Δ𝑥 (𝑞) := max
𝐷,𝐷′∈D:𝐷′=𝐷+𝑥

∥𝑞(𝐷) − 𝑞(𝐷′)∥1. (4.2)

While we cannot directly scale the noise to individual sensitivity, we can scale the on-device

budget consumption using this notion of sensitivity. That is, for a fixed and known amount of noise

101



that will be added to the query, a lower individual sensitivity means that less budget is consumed

from a device-epoch. This approach provides a guarantee of individual 2 DP [126, 131] for a

device-epoch, defined as follows.

Individual device-epoch DP. Fix 𝜖 > 0, 𝑃 ⊂ I ∪ C, and 𝑥 ∈ X. A randomized computation

M : D→ R𝑚 satisfies individual device-epoch 𝜖-DP for 𝑥 if for all databases 𝐷, 𝐷′ ∈ D such that

𝐷 ∼𝑃𝑥 𝐷′, for any set of outputs 𝑆 ⊆ R𝑚 we have Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 Pr[M(𝐷′) ∈ 𝑆].

Intuitively, IDP ensures that, from the point of view of a fixed device-epoch 𝑥, the associated

data 𝐹 is as hard to recover from query results as it would be under DP.

IDP Guarantees

Through IDP, we prove two main properties of Cookie Monster: (1) Individual DP guarantee,

which implies bounds on cross-site leakage, demonstrating that the API cannot be used to reveal

cross-site activity; and (2) Unlinkability guarantee, which implies bounds on within-site linka-

bility, demonstrating that the API cannot be used even by a first-party site to distinguish whether a

set of events is all on one device vs. spread across two devices.

For the IDP guarantee, we give two versions. First, a stronger version under a mild con-

straint on the class of allowed queries, specifically that ∀𝑖,∀𝐹, 𝐴(𝐹1, ..., 𝐹𝑖−1, 𝐹𝑖∩𝑃, 𝐹𝑖+1, ..., 𝐹𝑘 ) =

𝐴(𝐹1, ..., 𝐹𝑖−1, ∅, 𝐹𝑖, ..., 𝐹𝑘 ). A sufficient condition is to ensure that queries leverage public events

only through their report identifier, i.e. 𝐹𝐴 ∩ 𝑃 = ∅. The queries from the scenarios we consider

(§4.3.1) satisfy this property. Second, a slightly weaker version of the DP guarantee with increased

privacy loss, but with no constraints on the query class, which is useful when considering colluding

queriers.

Theorem 7 (Individual DP guarantee). Fix a set of public events 𝑃 ⊂ I ∪C, and budget capaci-

ties (𝜖𝐺
𝑑
)𝑑∈D . Case 1: If all the queries use attribution functions 𝐴 satisfying∀𝑖,∀𝐹, 𝐴(𝐹1, ..., 𝐹𝑖−1, 𝐹𝑖∩

𝑃, 𝐹𝑖+1, ..., 𝐹𝑘 ) = 𝐴(𝐹1, ..., 𝐹𝑖−1, ∅, 𝐹𝑖,
2While referred to as Personalized Differential Privacy (PDP) in some papers [126], we use the term Individual

Differential Privacy (IDP), as it better reflects the concept and aligns with individual sensitivity, the basis of the
definition. This recent paper [131] also uses IDP terminology.

102



..., 𝐹𝑘 ), then for 𝑥 ∈ X on device 𝑑, Cookie Monster satisfies individual device-epoch 𝜖𝐺
𝑑

-DP for

𝑥 under public information 𝑃. Case 2: For general attribution functions, Cookie Monster satisfies

individual device-epoch 2𝜖𝐺
𝑑

-DP for 𝑥 under public information 𝑃.

Intuitively, the information gained on cross-site (private to the querier) events in device-epoch

𝑥 under the querier’s queries is bounded by 𝜖𝐺𝑥 (or 2𝜖𝐺𝑥 without query constraints).

Theorem 8 (Unlinkability guarantee). Fix budget capacities (𝜖𝐺
𝑑
)𝑑∈D . Take any 𝑑0, 𝑑1 ∈ D,

𝑒 ∈ E, and 𝐹1 ⊂ 𝐹0. Denote 𝑥0 := (𝑑0, 𝑒, 𝐹0), 𝑥1 := (𝑑1, 𝑒, 𝐹1), 𝑥2 := (𝑑0, 𝑒, 𝐹0 \ 𝐹1) ∈ X. For

any 𝐷, 𝐷′ ∈ D such that {𝐷, 𝐷′} = {𝐷0 + 𝑥0, 𝐷0 + 𝑥1 + 𝑥2} for some 𝐷0 ∈ D, instantiationM of

Cookie Monster, and 𝑆 ⊂ 𝑅𝑎𝑛𝑔𝑒(M) we have: Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒2𝜖𝐺
𝑑0
+𝜖𝐺

𝑑1 Pr[M(𝐷′) ∈ 𝑆] .

Intuitively, linking a set of events across two devices—compared to detecting these events on

one device—is only made easier by the amount of budget on the second device; Cookie Mon-

ster does not introduce additional privacy loss for linkability, above what is revealed through DP

queries.

4.5.3 IDP Optimizations

IDP allows discounting the DP budget based on individual sensitivity, which is never greater

but often smaller than global sensitivity. The easiest way to grasp this opportunity is to visualize

and compare the definitions of global and individual sensitivities for reports and queries. Recall

that Cookie Monster enforces a bound on reports by capping each coordinate in the attribution

function’s output to a querier-provided maximum. Given this cap, we prove the following formulas

for both sensitivities:

Theorem 9 (Global sensitivity of reports and queries). Fix a report identifier 𝑟, a device 𝑑𝑟 , a

set of epochs 𝐸𝑟 , an attribution function 𝐴 and the corresponding report 𝜌 : 𝐷 ↦→ 𝐴(𝐷𝐸𝑟

𝑑𝑟
). We

have:

Δ(𝜌) = max ∥𝐴(𝐹1, ..., 𝐹𝑘 )
𝑖∈[𝑘],𝐹1,...,𝐹𝑘∈P(I∪C)

− 𝐴(𝐹1, ..., 𝐹𝑖−1, ∅, 𝐹𝑖+1, ..., 𝐹𝑘 )∥1

103



Next, fix a query 𝑄 with reports (𝜌𝑟)𝑟∈𝑅 such that each device-epoch participates in at most

one report. We have Δ(𝑄) = max𝑟∈𝑅 Δ(𝜌𝑟).

Theorem 10 (Individual sensitivity of reports and queries). Fix a device-epoch record 𝑥 =

(𝑑, 𝑒, 𝐹) ∈ X. Fix a report identifier 𝑟, a device 𝑑𝑟 , a set of epochs 𝐸𝑟 = {𝑒1, . . . , 𝑒𝑘 }, an

attribution function 𝐴 with relevant events 𝐹𝐴, and the corresponding report 𝜌 : 𝐷 ↦→ 𝐴(𝐷𝐸𝑟

𝑑𝑟
).

We have: Δ𝑥 (𝜌) = max ∥𝐴(𝐹1, ..., 𝐹𝑖−1, 𝐹,
𝐹1,...,𝐹𝑖−1,𝐹𝑖+1,...,𝐹𝑘∈P(I∪C)

𝐹𝑖+1, ..., 𝐹𝑘 ) − 𝐴(𝐹1, ..., 𝐹𝑖−1, ∅, 𝐹𝑖+1, ..., 𝐹𝑘 )∥1 if

𝑑 = 𝑑𝑟 and 𝑒 = 𝑒𝑖 ∈ 𝐸𝑟 , and Δ𝑥 (𝜌) = 0 otherwise.

In particular,

Δ𝑥 (𝜌) ≤



0 if 𝑑 ≠ 𝑑𝑟 , 𝑒 ∉ 𝐸𝑟 or 𝐹 ∩ 𝐹𝐴 = ∅

∥𝐴(𝐹) − 𝐴(∅)∥1 if 𝑑 = 𝑑𝑟 and 𝐸𝑟 = {𝑒}

Δ(𝜌) if 𝑑 = 𝑑𝑟 , 𝑒 ∈ 𝐸𝑟 and 𝐹 ∩ 𝐹𝐴 ≠ ∅

Next, fix a query 𝑄 with reports (𝜌𝑟)𝑟∈𝑅. Then we have: Δ𝑥 (𝑄) ≤
∑
𝑟∈𝑅 Δ𝑥 (𝜌𝑟). In particular,

if 𝑥 participates in at most one report 𝜌𝑟 , then: Δ𝑥 (𝑄) = Δ𝑥 (𝜌𝑟).

This theorem justifies both the inherent optimization used by all on-device systems and the new

optimizations added in Cookie Monster.

Inherent on-device optimization. The condition 𝑑 = 𝑑𝑟 in Thm. 10 explains why, under IDP,

on-device budgeting systems deduct privacy loss only for devices that participate in a query. This

is more efficient than off-device systems like IPA, which, under traditional DP, must deduct budget

based on Δ(𝑄) from all devices, regardless of their participation (Thm. 9).

New optimization examples. First, devices that participate in a query but have no relevant data

(i.e. 𝐹 ∩ 𝐹𝐴 = ∅ or 𝐴(𝐹) = 𝐴(∅) in Thm. 10) do not incur budget loss. This is why, in the

example from § 4.4.2, we don’t deduct from epoch 𝑒3, which has no Nike impressions. Second, a

device’s individual sensitivity depends only on reports it participates in (Δ𝑥 (𝑄) = Δ𝑥 (𝜌𝑟)), whereas

global sensitivity depends on all reports in the query (Δ(𝑄) = max𝑟∈𝑅 Δ(𝜌𝑟)). For instance, since

104



the report 𝜌 typically depends on the public information 𝐹 ∩ 𝑃 of a record (𝑑, 𝑒, 𝐹), we use a

$70 cap instead of $100 in the Nike example. Third, if an attribution spans only one epoch (or is

broken into single-epoch reports), individual sensitivity can be further reduced based on the private

information 𝐹. For example, if Nike measures the average impression-to-conversion delay (0 to

7 days) in a single epoch and a record 𝑥 has one impression only 1 day before the conversion, its

individual budget will be 1/7th of the global budget.

4.6 Chrome Prototype

We integrated Cookie Monster into Google Chrome by modifying ARA. We disabled ARA’s

impression-level budgeting, added epoch support, and extended ARA’s database to include a ta-

ble for privacy filters for each epoch-querier pair. Unlike ARA, which supports only last-touch

attribution and fetches only the latest impression, our implementation retrieves all impressions re-

lated to the conversion, groups them by epoch, and identifies epochs with no relevant data to avoid

unnecessary budget consumption.

4.7 Evaluation

We seek to answer three key questions:

Q1: How do optimizations impact budget consumption?

Q2: How do optimizations impact query accuracy?

Q3: How effective is bias measurement?

4.7.1 Methodology

We evaluate Cookie Monster on three datasets—a microbenchmark and two realistic adver-

tising datasets from PATCG and Criteo—and compare its privacy budget consumption and query

accuracy against two baselines. The first baseline is IPA-like, our own prototype implementing

IPA’s centralized budgeting and query execution. The second is ARA-like, a version of ARA

105



providing device-epoch-level guarantees. ARA-like includes the inherent optimization of all on-

device systems but excludes the new optimizations in §4.5.3.

Scenario-driven methodology. We conduct our evaluation by enacting the scenario from §4.3.1.

An advertiser (Nike) runs ad campaigns and repeatedly measures their efficacy. Each time a cus-

tomer purchases quantity𝐶 of a product, Nike requests an attribution report, specifying the relevant

ad campaigns. Nike requests reports over some attribution window and uses last-touch attribution.

If no relevant impression is found, the report value is 0; otherwise, it is 𝐶. Nike batches reports

and submits them to the aggregation service for a DP summation query using the Laplace mech-

anism. In our experiments, Nike repeatedly performs queries on report batches of size 𝐵, which

varies by dataset. Once 𝐵 reports are gathered, Nike runs its query. This is repeated over time

as more batches of 𝐵 reports are gathered. This is also repeated for each product, e.g., 10 in the

microbenchmark/PATCG and a variable number in Criteo.

When requesting an attribution report for a conversion, Nike must specify the requested privacy

budget, 𝜖 – the same value for all reports in a batch. Since the MPC uses the Laplace mechanism

to ensure 𝜖-DP, Nike selects 𝜖 to achieve acceptable accuracy. We assume Nike chooses 𝜖 in an

attempt to keep query error within 5% (𝛼 = 0.05) of the true value with 99% probability (𝛽 = 0.01),

which corresponds to roughly 0.02 RMSRE. The formula for 𝜖 is: 𝜖 = Δ ln(1/𝛽)/(𝛼 · 𝐵 · 𝑐), where

Δ is the maximum value for 𝐶 and 𝑐 is Nike’s rough estimate of the average 𝐶.

Our specific method is: we run repeated, single-advertiser summation queries on fixed-size

batches of attribution reports, using last-touch attribution and a privacy budget calibrated as de-

scribed above. Default parameters include: a 7-day epoch size, a 30-day attribution window, and a

global privacy budget per epoch of 𝜖𝐺 = 1.

Microbenchmark dataset. To methodically evaluate Cookie Monster, under a range of condi-

tions, more or less favorable to our optimizations, we create a synthetic dataset with 40,000 con-

versions across 10 products over 120 days. We expose two knobs: Knob1, the user participation

rate per query, determines the fraction of users who are assigned conversions relevant for a par-

ticular query; Knob2, the number of impressions per user per day. These knobs impact budget

106



allocation across IPA-like, ARA-like, and Cookie Monster. Lower Knob1 increases opportuni-

ties for fine-grained accounting in ARA-like and Cookie Monster. Lower Knob2 allows Cookie

Monster to conserve privacy by not deducting from epochs with no relevant impressions, a key

optimization over ARA-like.

PATCG dataset. To evaluate Cookie Monster under more realistic conditions, we resort to the

PATCG and Criteo datasets. PATCG is a synthetic dataset released by the namesake W3C com-

munity group [134], which contains 24M conversions from a single advertiser over 30 days. This

dataset represents a large advertiser, with only 1% of conversions attributed to impressions. There

are 16M distinct users, and each user sees an average of 3.2 impressions. Users who convert take

part in 1.5 conversions on average.

Criteo dataset. The Criteo dataset [135] is sampled from a 90-day log of live ad impressions and

conversions recorded by the Criteo ad-tech. The dataset includes data from 292 advertisers with

12M impression records and 1.3M conversion records. There are 10M unique users. The dataset

provides opportunities for evaluating Cookie Monster in some additional dimensions compared

to PATCG and the microbenchmark. In particular, the Criteo dataset contains data from multiple

advertisers of widely distinct sizes, i.e., having a wide range in terms of number of impressions

(1–2.6M impressions) and conversions per advertiser (0–478k conversions). However, since the

dataset is heavily subsampled, missing many impressions, we also evaluate Cookie Monster on

augmented versions of this dataset, in which we add synthetic impressions to compensate for the

missing impressions that might otherwise favor Cookie Monster’s optimizations.

4.7.2 Microbenchmark Evaluation (Q1)

We use the microbenchmark to evaluate the impact of individual-sensitivity optimizations on

privacy budget consumption across a range of controlled workloads (question Q1).

Varying user participation rate per query (knob1). We first vary the user participation rate

per query. With a default batch size of 2,000 reports and 10 products (queried twice, totaling 20

queries), we create 40,000 conversions. Knob1 controls how these conversions are assigned to

107



0.001 0.01 0.1 1.0

5

0.01

2

5

0.1

2

5

0.001 0.01 0.1 1.0
0

0.2

0.4

0.6

0.8

0.001 0.01 0.1 1.0

2

5

0.01
2

5

0.1
2

5

0.001 0.01 0.1 1.0
0

0.2

0.4

0.6

0.8

Cookie Monster ARA-like (on-device) IPA-like (off-device)

fraction of users per query fraction of users per query user impressions per day user impressions per day

av
g.

 b
ud

ge
t 

(l
og

)

m
ax

 b
ud

ge
t

av
g.

 b
ud

ge
t 

(l
og

)

m
ax

 b
ud

ge
t

(a) Avg. budget varying knob1 (b) Max. budget varying knob1 (c) Avg. budget varying knob2 (d) Max. budget varying knob2

Fig. 4.4: Budget consumption on the microbenchmark. (a) and (b) show average and maximum
budget consumption across all device-epochs, respectively, as a function of the fraction of users
that participate per query (knob1); value of knob2 is constant 0.1. (c) and (d) show the same
metrics as a function of user impressions per day (knob2); value of knob1 is constant 0.1.

users, indirectly determining the total number of users. A lower knob1 favors on-device budget-

ing, as it spreads the 40,000 conversions across more users, creating more privacy filters for the

advertiser. For example, with knob1 = 1, each user participates in all 20 query batches, requiring

a minimum of 2,000 users, while knob1 = 0.001 generates 2M users. In the PATCG dataset, users

convert with a 0.05 daily rate, corresponding to knob1 = 0.1, which we use as default in other

experiments.

Fig. 4.4a and 4.4b show the average and maximum budget consumption across all device-

epochs requested through the 20 queries. Qualitatively, the average budget consumption is a much

more useful metric to assess the efficiency of the three systems, but we include the maximum

because it reduces IDP guarantees to standard DP guarantees, thereby providing a more apples-

to-apples comparison between on-device and off-device budgeting. Recall that IPA-like does not

distribute budget consumption across devices but has a centralized privacy filter for each epoch,

from which it deducts budget upon executing each query. As a result, increasing user participation

per query (knob1) does not impact its budget consumption, which is always higher than the other

methods’. Cookie Monster consistently consumes the least budget due to its optimizations, with

greater improvements as user participation increases (lower knob1), since more device-epochs

lack relevant impressions and don’t deduct budget. Even under the max budget metric, on-device

systems outperform IPA-like, with Cookie Monster being the most efficient.

Varying the number of impressions per user per day (knob2). We now fix knob1 at 0.1 and

108



(a) Avg. budget consumed across all device-
epochs

(b) CDF of RMSRE (c) RMSRE as a function of epoch length

Fig. 4.5: Budget consumption and query accuracy on the PATCG dataset. (a) Average budget
consumption across all device-epochs as a function of the number of queries submitted by the
advertiser. (b) CDF of RMSRE with a 7-day epoch. (c) RMSRE median (horizontal lines), first
and third quartiles (boxes), and max/min (top/bottom range markers) as epoch length increases.

vary the number of impressions per user per day (knob2). In PATCG, users see an average of 3.22

ads over 30 days, giving knob2 a value of 0.1. Fig. 4.4c and 4.4d confirm that Cookie Monster’s

optimizations are most effective when users have fewer impressions.

Thus, Cookie Monster reduces budget consumption compared to baselines, especially when

budget is spread across many users and when users have fewer impressions.

4.7.3 PATCG Evaluation (Q1, Q2)

We use the PATCG dataset to evaluate Cookie Monster’s impact on budget consumption (Q1)

and query accuracy (Q2). This dataset links impressions and conversions to attributes, with values

uniformly sampled from 0 to 9, representing 10 potential products. Nike queries each product

eight times over the four months spanning the dataset, totaling 80 queries with batch sizes between

280,000 and 303,009 reports. Large batch sizes accommodate the low attribution rate (1% of

impressions relevant to conversions), assuming Nike adjusts batch sizes accordingly.

Fig. 4.5a illustrates the average privacy budget consumed by each system as 80 queries are

submitted for execution by the advertiser. The x-axis represents the order of queries, with points

indicating budget consumption. IPA-like executes only a small fraction of queries (3.75%) due to

its coarse-grained, population-level accounting, leading to early budget depletion. ARA-like and

Cookie Monster, with finer-grained, individual-level accounting, execute all queries and resulting

in smoother and lower average budget consumption. Cookie Monster shows up to 206 times lower

109



average budget consumption compared to ARA-like, highlighting the benefits of its individual-

sensitivity optimizations.

Next, we assess query accuracy (Q2). On-device systems (ARA-like and Cookie Monster) hide

budgets when depleted, which can affect query accuracy, while IPA-like explicitly rejects queries

with exhausted budgets. As in our experiments, privacy budgets are set to aim for high accuracy

in the Laplace mechanism, we expect IPA’s executed queries to have errors within the 0.02 mark.

In contrast, ARA and Cookie Monster may incur additional errors when epochs run out of budget,

leading to nullified or incomplete reports.

Fig. 4.5b shows the CDF of root mean square relative error (RMSRE), defined as√︁
E[(M(𝐷) −𝑄(𝐷))2/𝑄(𝐷)2] for an estimate M(𝐷) of the query output 𝑄(𝐷). This metric

captures both Laplace-induced and IDP-bias-induced errors. The CDF shows query errors for

each system. IPA-like’s line ends at 3.75% of queries, aligning with its budget constraints but

maintaining within the 5% error mark. Cookie Monster consistently exhibits lower errors than

ARA-like due to its budget conservation, resulting in fewer nullified reports and reduced bias. This

is true without any bias mitigation strategies. In §4.7.5, we show that even with bias measurement

running alongside every query, Cookie Monster still outperforms ARA-like (which has no bias

measurement) in terms of budget consumption and query accuracy.

Finally, we explore how epoch length affects performance. Longer epochs strengthen device-

epoch privacy guarantees but slow budget refreshing, leading to more query rejections in IPA and

increased bias in on-device systems without mitigation. Fig. 4.5c evaluates RMSRE measures

(median, first and third quartiles, and range) as epoch length varies. IPA-like’s query execution

drops to 1.25% at one-month epochs, while Cookie Monster and ARA-like complete all queries but

with increasing errors. Cookie Monster’s budget conservation results in fewer altered or nullified

reports, maintaining lower error degradation compared to ARA-like as epochs grow.

110



(a) CDF of budget on Criteo. (b) CDF of RMSRE. (c) RMSRE as function of epoch
length.

(d) CDF of budget on Criteo++.

Fig. 4.6: Budget consumption and query accuracy on Criteo. (a) CDF of per-device average
budget consumption across epochs for all devices and advertisers. (b) CDF of RMSREs for a
7-day epoch. (c) RMSRE metrics with varying epoch length (see Fig. 4.5c for format). (d) The
same CDF as in (a), but for Criteo++, showing the impact of synthetic impression augmentation
on Cookie Monster’s performance.

4.7.4 Criteo Evaluation (Q1, Q2)

The Criteo dataset enables evaluation across diverse advertisers. It includes 1.3M conversions

from 292 advertisers, with conversions ranging from 0 to 478k per advertiser. To achieve mean-

ingful accuracy under DP, an advertiser needs a minimum number of reports. We set this minimum

to 350, allowing us to formulate at least one query for 109 advertisers. Advertisers with more than

350 conversions wait to accumulate 350 reports per batch for each query, resulting in 898 queries

across these advertisers using the attribute “product-category-3” as a product ID.

Fig. 4.6a shows a CDF of per-device average budget consumption across epochs, where the

distribution covers all devices and all advertisers; that is, there is a single data point corresponding

to each device and advertiser pair, which indicates the average consumption across epochs within

an advertiser’s filters on a given device by the end of the workload. Lower values indicate better

performance. Cookie Monster conserves the most privacy budget, with 95% of device-advertiser

pairs having more capacity left compared to both baselines.

Fig. 4.6b presents the CDF of RMSREs for all 898 queries. IPA-like completes only a small

fraction of queries but with good accuracy. ARA-like and Cookie Monster accept all queries,

potentially at the expense of higher error; however, Cookie Monster’s error distribution remains

better than ARA-like’s, with errors within IPA-like’s range for up to 96% of queries. This results

111



0

0.2

0.4

0.6

0.8

1

20 40 60 80 100
0.01

2

5

0.1
2

5

1
2

5%

100%

100%

11% 30%

38% 48%

 N/A   0.02 0.05 0.1 0.2
0.01

2

5

0.1
2

5

1
2

IPA-like (off-device) ARA-like (on-device) Cookie Monster w/o bias measurement Cookie Monster w/ bias measurement
Cookie Monster w/ bias measurement (estimation of error)

% of queries Error estimation cutoff

av
g.

 b
ud

ge
t

RM
SR

E 
qu

er
y 

er
ro

r 
(lo

g)

RM
SR

E 
qu

er
y 

er
ro

r 
(lo

g)

(a) Avg. budget consumed (b) CDF of RMSRE (c) RMSRE as function of error estimation cutoff.

Fig. 4.7: Budget consumption and query accuracy with bias measurement on the microbench-
mark. (a) Average budget consumed across all device-epochs. (b) CDF of true RMSRE for
executed queries, alongside Cookie Monster’s RMSRE estimation from bias measurement (light-
purple line). (c) Quartiles of true RMSRE, where queries with error estimate above a given cutoff
are rejected by Cookie Monster with bias measurement.

from Cookie Monster’s optimizations that conserve budget and avoid introducing bias.

Fig. 4.6c examines how RMSRE varies with epoch length. Longer epochs increase contention

on per-epoch filters. Despite this, Cookie Monster’s optimizations show substantial benefits, with

minimal RMSRE increase (25% increase from 1-day to 60-day epoch for median RMSRE). Al-

though maximum RMSRE increases with epoch length, Cookie Monster’s performance remains

superior to ARA-like.

Recall that the Criteo dataset is heavily subsampled, so there is the possibility that missing im-

pressions may amplify the benefit of our optimizations. To assess Cookie Monster’s performance

in scenarios with more relevant impressions, we augment the Criteo dataset with synthetic impres-

sions for each conversion. The results, shown in Fig. 4.6d, compare the CDFs of budget consump-

tion with varying augmentation levels. The behavior of IPA-like and ARA-like remains unchanged

by augmentation, as they do not optimize for missing relevant impressions. For Cookie Monster,

budget efficiency decreases as more synthetic impressions are added, approaching ARA-like’s per-

formance at 9 extra impressions per conversion. The impressions are uniformly distributed across

the attribution window, ensuring that most epochs have relevant impressions for most conversions,

so Cookie Monster’s optimization is eliminated and its behavior follows ARA-like’s.

112



4.7.5 Bias Measurement (Q3)

We evaluate Cookie Monster’s bias measurement technique using our microbenchmark with

default knob settings (0.1) and an increased query load to measure significant bias. Specifically,

we use 60 days and repeat each query 40 times.

Fig. 4.7a shows the budget overhead incurred by bias measurement. The bias measurement’s

counts are scaled to have 10% the sensitivity of the original query, so the overall sensitivity of

the query/side-query combination increases by 10%. The average consumed budget goes from

0.36 without bias measurement to 0.43 with bias measurement; this is more than a 10% increase

since some epochs that originally paid zero budget through our IDP optimization, now pay for bias

counts.

Fig. 4.7b shows the CDF of RMSREs across all 400 queries, with a log scale on the y-axis

to highlight smaller differences among Cookie Monster variants compared to ARA. Due to the

heavy query load, IPA executes only 5% of the queries and ARA ultimately returns empty reports,

resulting in a relative error of 1. Cookie Monster without bias measurement plateaus at 0.2 error.

Cookie Monster with bias measurement shows a similar trend to Cookie Monster without it, albeit

with increased error, because the higher sensitivity of the query leads additional epochs to run

out of budget. However, the bias measurements let queriers compute an estimate of the error,

which, although noisy (as it is also differentially private), generally serves as an upper bound on

true RMSRE. Queriers can compare this estimate to a predetermined cutoff and reject queries

exceeding it. Fig. 4.7c displays the quartiles of true RMSREs after rejecting queries based on

estimated RMSRE cutoffs. For instance, using a cutoff of 0.05 enables queriers to limit bias,

achieving a maximum error of 0.04 (down from 0.21), but only accepting 30% of the queries.

Rejected queries still consume budget, as rejection is a post-processing step.

Thus, even with rudimentary bias measurement, Cookie Monster offers substantial benefits

over IPA while maintaining lower real error than ARA. While we validated our technique on a

microbenchmark with increased query load, applying it to real-life datasets remains an open chal-

lenge. Future work could enhance our technique by scheduling bias measurements or using DP

113



threshold comparison mechanisms.

4.8 Related Work

DP systems. Most DP systems operate in the centralized-DP model, where a trusted curator runs

queries using global sensitivity [136]. Some implement fine-grained accounting through parallel

composition [137, 9, 8, 10], a coarse form of individual DP (IDP) that lacks optimizations like

those in Cookie Monster. Others function in the local-DP model, where devices randomize their

data locally [138], and therefore inherently do on-device budgeting but have higher utility costs.

Distributed systems like [98, 139] emulate the central model with cryptographic constructions; like

IPA, they maintain a single privacy filter, not leveraging IDP to conserve budget. [140] uses the

shuffle model [141] to combine local randomization with a minimal trusted party. Cookie Monster

operates in the central model with on-device budgeting and uses an IDP formalization to enable

new optimizations.

Private ads measurement. Several proposals exist for private ad measurement systems. Apple’s

PCM [142] relies on entropy limits for privacy. Meta and Mozilla’s IPA [143] uses centralized bud-

geting, while Google’s ARA [122] and Apple’s PAM [124] utilize on-device budgeting. ARA has

primarily focused on optimizing in-query budget and utility. [144] optimizes a single vector-valued

hierarchical query, whereas [145] assumes a simplified ARA with off-device impression-level DP

guarantees, efficiently bounding each impression’s contribution for queries known upfront. [146]

offers a framework for attribution logic and DP neighborhood relations, proposing clipping strate-

gies for bounding global sensitivity. Our work optimizes on-device budgeting across queries, using

tighter individual sensitivity bounds. Our method is agnostic to how these bounds are enforced,

potentially benefiting from clipping algorithms [144, 145, 146].

IDP was introduced in the centralized-DP setting, where a trusted curator manages individual

budgets and leverages individual sensitivity to optimize privacy accounting [126, 131]. IDP is used

for SQL-like queries and gradient descent. The literature emphasizes the need to keep individual

budgets private. [132] studies the release of DP aggregates over these budgets while [126] notes

114



that out-of-budget records must be dropped silently, leaving bias analysis for future work.

4.9 Conclusion

Web advertising is at a crossroads, with a unique opportunity to enhance online privacy through

new, privacy-preserving APIs from major browser vendors. We show that a novel individual DP

formulation can significantly improve privacy budgeting in on-device systems. However, further

progress is needed in query support, error management, and scalability. Our paper provides foun-

dational insights and formal analysis to guide future research and industry collaboration.

115



Chapter 5: Dances with Locks: An Adaptive Commit Protocol for

Distributed Transactions

5.1 Overview

Strict Two-Phase Locking (2PL) combined with Two-Phase Commit (2PC) remains the stan-

dard approach for ensuring strict serializability and atomicity in distributed transactions. However,

its conservative strategy of holding locks throughout the full duration of the commit process ampli-

fies the contention footprint of transactions, limiting throughput and latency under high-contention

workloads. Relaxed variants, such as Early Lock Release (ELR), improve concurrency through

pipelining: by releasing locks earlier in the commit protocol, subsequent transactions can acquire

locks and proceed before prior commits complete. However, this introduces commit-time depen-

dencies that require additional coordination and risk cascading aborts. No single protocol excels

across all workload conditions and resource availability, yet most distributed systems hardcode one

fixed strategy — designed for specific assumptions while sacrificing generality.

This paper introduces Sangria, a novel distributed commit protocol that dynamically adapts

its commit strategy to exploit the complementary strengths of both conservative and relaxed ap-

proaches. Unlike traditional designs that enforce a single, fixed commit strategy across the entire

system, Sangria provides fine-grained adaptability: each participant involved in the transaction

— typically corresponding to an accessed data item — independently adjusts its commit behav-

ior based on its local contention and general resource availability. By intelligently balancing be-

tween conservative and relaxed commit modes at runtime, Sangria dynamically optimizes perfor-

mance under varying conditions while preserving the strong consistency guarantees inherent to

each mode. This work opens the door to a more flexible, workload-aware approach to distributed

transaction management — where transactions no longer commit rigidly, but instead dance to the

116



rhythm of the workload.

5.2 Introduction

Distributed transactions provide a powerful abstraction for simplifying application logic in dis-

tributed systems that operate on shared mutable state. By adhering to the ACID properties —

Atomicity, Consistency, Isolation, and Durability — distributed transaction protocols allow appli-

cations to reason about distributed operations as if they execute atomically and in isolation, even

in the presence of failures and concurrency. Strict serializability [147] is widely regarded as the

strongest isolation and consistency guarantee, ensuring that the outcome of concurrent transactions

is equivalent to some serial execution that respects real-time order.

Enforcing strict serializability in distributed settings often relies on combining Strict Two-

Phase Locking [148] (2PL) for concurrency control with Two-Phase Commit [149] (2PC) for

atomic commitment across participants — a combination we hereafter refer to as Strict-2PC. 2PL

enforces serializability by holding locks across all accessed data items until the transaction’s com-

mit decision is finalized, while 2PC ensures that all participants either commit or abort atomically,

preserving atomicity. While Strict-2PC provides strong correctness guarantees, its conservative

nature forces transactions to hold locks across the entire commit process, including under net-

work delays and coordination rounds, resulting in increased contention footprints and degraded

performance under high-contention workloads. While we focus on 2PL in this paper, optimistic

concurrency control (OCC) schemes are also not immune, and often perform even worse under

high contention [150, 151, 152].

To address these limitations, various relaxations of Strict-2PC have been explored, aiming to

reduce lock contention by decoupling the time spent holding locks from commit coordination. One

such approach [153, 154, 155] is to apply Early Lock Release [156, 157] (ELR) to 2PC, which we

hereafter refer to as Pipelined-2PC. In Pipelined-2PC, locks are released early in the commit pro-

tocol, allowing subsequent transactions to acquire locks earlier and pipeline their execution. This

approach takes advantage of the fact that after a transaction T finishes the execution phase, it will

117



high medium low

Resolver Capacity

lo
w

m
ed

iu
m

hi
gh

W
or

kl
oa

d 
Co

nt
en

tio
n

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d 
Th

ro
ug

hp
ut

 A
dv

an
ta

ge

Pipelined-2PC

Strict-PC

Fig. 5.1: Heatmap illustrating the regimes where each protocol is most effective as a function of
workload contention (vertical axis) and Resolver capacity (horizontal axis). Red regions indicate
scenarios where pipelining (Pipelined-2PC) outperforms Strict-2PC, while blue regions indicate
the opposite. The color intensity reflects the magnitude of the performance advantage.

not acquire more locks, so holding locks after this point has no value from a 2PL perspective.

Furthermore, at this point, T is guaranteed to not abort due to concurrency control or application

logic, so the only reason it aborts is due to server failure, which should be rare. By releasing its

locks at the start of 2PC, T avoids blocking other transactions that access T’s writeset while T

is running its high-latency commit process. While this approach improves concurrency, it intro-

duces commit-time dependencies between transactions: if a transaction releases its locks early but

subsequently aborts, any dependent transactions that acquired conflicting locks before the com-

mit decision will also need to be aborted — a phenomenon known as cascading aborts. These

dependencies introduce two fundamental challenges: (1) pipeline stalls, where commit dependen-

cies must be resolved before transactions can safely commit, limiting the benefits of pipelining;

and (2) the need for distributed dependency tracking, which requires additional coordination and

bookkeeping across participants.

118



In this paper, we present a novel implementation of Pipelined-2PC that addresses these chal-

lenges by introducing a centralized coordination entity called the Resolver. The Resolver maintains

a global dependency graph of in-flight transactions and orchestrates commit resolution on behalf

of participants. This design simplifies dependency management by offloading tracking to a cen-

tralized entity, and enables an important performance optimization: batching commits. As depen-

dent transactions queue up waiting for their predecessors to commit, the Resolver groups multiple

ready-to-commit transactions into batches, reducing commit-time overhead by amortizing the cost

of durable storage writes across multiple transactions. In effect, this enables a distributed form of

group commit [158].

While Pipelined-2PC with the Resolver significantly improves concurrency under many work-

loads, the Resolver has limited resources so there are scenarios where it can become a bottleneck

itself. Always involving the Resolver on every transaction would therefore impose an overall scala-

bility limit on the system, which would not be ideal for low contention workloads. A big challenge

is that the level of contention within the same database varies over time and over different records,

and is often unpredictable [159, 160, 155]. Figure 5.1 sketches the interaction between two key

dimensions that influence commit protocol performance: (i) the level of workload contention, and

(ii) the capacity of the centralized Resolver responsible for dependency tracking and commit co-

ordination in Pipelined-2PC. This heatmap visualizes the regimes where each protocol is most

effective and is derived from a set of experiments presented in the evaluation section, which sys-

tematically explore performance across varying contention levels and Resolver capacities. Red

regions indicate scenarios where pipelining is more beneficial, while blue regions highlight where

Strict-2PC performs better. The intensity of each color reflects the magnitude of the performance

advantage for each protocol. We define it as the normalized throughput advantage i.e. the normal-

ized difference between the throughput of Pipelined-2PC and that of Strict-2PC under the same

workload configuration — a value closer to 1 indicates a performance gain relative to Strict-2PC,

while a value closer to -1 indicates a loss.

As contention increases, pipelining becomes increasingly advantageous. By enabling early

119



lock release and overlapping prepare phases across dependent transactions, it improves concur-

rency and reduces idle time. However, these benefits hinge on the Resolver’s capacity to efficiently

manage dependency tracking. When the Resolver is heavily loaded — due to background traffic,

system resource contention, or long dependency chains (low capacity) — its coordination overhead

can offset pipelining’s gains.

This observation motivates our main contribution: Sangria, an adaptive commit protocol that

dynamically switches between Strict-2PC and Pipelined-2PC based on the workload. In our design,

each participant independently chooses whether to release locks early (enabling pipelining) or hold

locks conservatively, based on its own observed workload contention and the Resolver’s capacity.

The Resolver remains responsible for dependency tracking and group commits, but its involvement

is reduced when participants opportunistically bypass pipelining under favorable conditions. This

design allows the system to automatically balance between aggressive pipelining and conservative

commit behavior, achieving consistently high performance across diverse workload patterns even

under heavy contention or centralized Resolver pressure.

Enabling this adaptive behavior required extending the 2PC protocol itself. We introduce

lightweight coordination enhancements where the coordinator piggybacks information about the

current Resolver load and contention onto the Prepare requests. Participants use this information

to decide whether to release locks early or continue to hold them. In turn, participants piggyback

both their locking decisions and any local dependency information onto the corresponding Prepare

responses, informing the coordinator of their chosen commit behavior and dependency state. This

information allows the coordinator to make transaction-specific decisions on whether to delegate

commit processing to the Resolver, notify it asynchronously of the commit decision, or bypass

it altogether. These protocol-level extensions support different policies to guide adaptation deci-

sions, allowing the system to flexibly respond to changing workload and resource dynamics while

preserving the correctness guarantees of the underlying protocols.

In summary, this paper makes the following contributions:

• We present a novel Pipelined-2PC protocol with a centralized Resolver that addresses depen-

120



dency tracking challenges and enables efficient commit batching.

• We introduce an adaptive commit protocol that allows each participant to independently make

early lock release decisions based on its local contention and Resolver load, combining the

strengths of Strict-2PC and Pipelined-2PC commit strategies.

• We evaluate our system under a wide range of workload patterns and Resolver capacities, show-

ing that our adaptive design consistently outperforms fixed commit strategies, providing better

throughput, lower latency, and increased robustness to contention and resource imbalance.

The rest of the paper is organized as follows: Section 5.3 provides background on distributed

commit protocols. Section 5.4 describes the design of our Resolver-based Pipelined-2PC imple-

mentation. Section 5.5 presents our adaptive commit protocol. Section 5.6 evaluates our system

experimentally. Section 5.7 discusses related work, Section 5.8 discusses future work, and Section

5.9 concludes.

5.3 Background

This section provides an overview of the two foundational commit protocols: Strict-2PC and

Pipelined-2PC. They form the basis of the adaptive protocol introduced in this paper. Figure 5.2

illustrates their behavior using an example: Figure 5.2(a) shows the execution under Strict-2PC,

while Figure 5.2(b) presents the same transaction sequence under Pipelined-2PC.

The example involves two write-only transactions, 𝑇1 and 𝑇2, executing concurrently across

four participants, 𝑃1 through 𝑃4, each corresponding to a data item accessed by the transactions.

Transaction 𝑇1 writes data from 𝑃1, 𝑃2 and 𝑃3, while 𝑇2 operates on 𝑃3 and 𝑃4. We refer to the

initial phase where transactions stage writes as the transaction logic. In the figure, solid-colored

regions indicate the period during which locks are held, while dashed-colored regions denote pe-

riods after locks are released. Although both transactions are submitted concurrently, 𝑇1 arrives

first and acquires exclusive locks on 𝑃1, 𝑃2, and 𝑃3, thereby blocking 𝑇2 on 𝑃3. This introduces a

dependency between the two transactions. However, 𝑇2 can proceed with its transaction logic on

121



TX logic

Prepare

Log Prepare 
to WAL 

(disk write)

TX1 TX2

Commit

Log Commit 
to WAL 

(disk write)

TX logic

Prepare

Log Prepare 
to WAL 

(disk write)

Commit

Log Commit 
to WAL 

(disk write)

TX logic

Prepare

Log Prepare 
to WAL 

(disk write)

Commit

Log Commit 
to WAL 

(disk write)

TX logic

Prepare

Log Prepare 
to WAL 

(disk write)

Commit

Log Commit 
to WAL 

(disk write)

Unlock
TX logic

Prepare

Log Prepare 
to WAL 

(disk write)

Unlock

Commit

Log Commit 
to WAL 

(disk write)

C
ontention Footprint

Stall

TX logic

Prepare

Log Prepare 
to WAL 

(disk write)

Commit

Log Commit 
to WAL 

(disk write)

TX logic

Prepare

Log Prepare 
to WAL 

(disk write)

Commit

Log Commit 
to WAL 

(disk write)

TX logic

Pr
ep

ar
e

Log Prepare 
to WAL 

(disk write)

C
om

m
it

Log Commit 
to WAL 

(disk write)

TX logic

Commit

Log Commit 
to WAL 

(disk write)

Unlock

Unlock

Commit

Log Commit 
to WAL 

(disk write)

TX logic

Pr
ep

ar
e

Log Prepare 
to WAL 

(disk write)

Stall

Prepare

Log Prepare 
to WAL 

(disk write)

Stall

Stall

P1 P2 P3 P4

TX1 TX2

P1 P2 P3 P4

(a) Strict-2PC (b) Pipelined-2PC

Fig. 5.2: Strict 2PC vs Pipelined 2PC. (a) In Strict 2PC, locks are held throughout the entire
commit protocol, resulting in long lock hold times and increased contention. (b) In Pipelined 2PC,
locks are released earlier — immediately after the prepare record is appended to the WAL buffer
— allowing subsequent transactions to proceed sooner and reducing contention, but introducing
commit-time dependencies that require additional coordination to ensure correctness.

𝑃4, where there are no conflicts. Note that each transaction’s write operations are applied indepen-

dently across keys, allowing them to proceed in parallel on different participants.

Strict-2PC. In Strict-2PC (Figure 5.2(a)), the coordinator initiates the execution of transaction 𝑇1,

which acquires locks on each accessed participant (𝑃1, 𝑃2, 𝑃3) according to strict 2PL to execute

its transaction logic. These locks are retained throughout the entire transaction lifecycle, spanning

both execution and commit phases, thereby ensuring strict serializability. Once 𝑇1 completes its

transaction logic and the client requests to commit, the coordinator initiates the prepare phase by

sending prepare requests to all participants. Each participant validates local constraints, ensures

durability by writing a prepare record to persistent storage (i.e., Write Ahead Log or WAL), and

responds with either a vote-commit or vote-abort. Importantly, locks remain held after voting to

commit. The coordinator waits for all participants to vote before proceeding to the commit phase.

If all participants vote to commit, the coordinator proceeds to the commit phase, logs the commit

122



decision, and sends commit messages to participants. Each participant writes a commit record

to WAL, applies the committed changes to the local storage and, after completing the commit

(shown at the “Unlock” point), releases its locks. This conservative design results in long lock

hold durations, as shown by the solid-colored regions in Figure 5.2(a), which reflect the total

contention footprint.

While Strict-2PC guarantees atomicity and strict serializability, the cumulative time locks are

held — even after local work is done — limits concurrency, especially as commit coordination

latency grows. This effect is clearly seen for 𝑇2: while 𝑇2 can process its transaction logic on

𝑃4, it remains blocked on 𝑃3 until 𝑇1 fully completes its commit phase and releases the lock. As a

result, 𝑇2’s contention footprint extends across much of𝑇1’s commit lifecycle, limiting concurrency

despite potential opportunities for overlap.

Pipelined-2PC. In Pipelined-2PC (Figure 5.2(b)), the protocol modifies the commit sequence to

reduce lock holding times by allowing participants to release locks earlier in the commit process.

As before, the coordinator initiates execution for 𝑇1, acquiring locks on participants 𝑃1, 𝑃2, and 𝑃3

during the transaction logic phase. Once transaction logic completes, the prepare phase begins as

in Strict-2PC, with prepare requests sent to all participants.

However, the key difference is that participants may release their locks immediately after ap-

pending the prepare record to an in-memory WAL buffer — before the record is durably persisted

to disk. This early lock release enables subsequent transactions to acquire locks and proceed with-

out waiting for the preceding transaction to commit. In the example, once 𝑃3 appends the prepare

record for 𝑇1 to its WAL buffer, it releases its lock, allowing 𝑇2 to acquire the lock on 𝑃3 and begin

its transaction logic and prepare phase. The actual persistence to disk happens asynchronously,

preserving the order of operations while enabling higher concurrency.

Despite this improved concurrency, early lock release introduces commit-time dependencies:

because 𝑇2 acquired locks on 𝑃3 before 𝑇1 committed, 𝑇2’s commit correctness now depends on 𝑇1

successfully committing. If 𝑇1 were to abort after releasing locks, any dependent transaction like

𝑇2 would also need to abort to preserve correctness — a phenomenon known as cascading aborts.

123



To manage these dependencies, additional coordination is required during commit processing.

After it receives all prepare responses, the coordinator determines the commit outcome. As

before, if all participants vote to commit, commit records are written to WAL and changes are

finalized. The solid and dashed regions in Figure 5.2(b) show that, compared to Strict-2PC, lock

hold durations are significantly shortened, allowing 𝑇2 to proceed earlier and reducing overall

contention footprint — at the cost of introducing dependency tracking and potential cascading

aborts.

5.4 Dependency Tracking with Resolver

Our proposed Pipelined-2PC protocol employs a centralized Resolver component to manage

transaction dependencies and enforce correct commit ordering. Figure 5.3 depicts the architectural

design and communication patterns among the Resolver, transaction coordinator, and participants.

At its core, the Resolver maintains a dependency graph that tracks unresolved dependencies

among in-flight transactions. Each transaction is represented as a node, and each directed edge

indicates a dependency relationship — typically arising from conflicting accesses to one or more

shared participants. The Resolver maintains a per-participant commit queue, where each queue

holds transactions that are eligible to commit at that participant. A transaction becomes eligible

when all of its dependencies are resolved. A dependency is considered resolved if the transaction

it depends on has either already committed or was newly unblocked in the current resolution pass.

By resolution pass, we are referring to the cascade of unblocks triggered by a transaction commit:

its direct dependents may become eligible, which in turn may unblock their dependents, and so

on. This recursive unblocking process is implemented in Algorithm 1 (lines 24–28), where each

resolved transaction is enqueued at the corresponding participant’s commit queue in dependency

order.

This design enables the Resolver to coordinate group commits efficiently while preserving

commit-order consistency. For each transaction, the Resolver logs its commit intent to durable

storage and tracks which participant queues it has been inserted into. Once all relevant participants

124



… 

Coordinator

Resolver
Dependency 

Graph

R
ea

dy
-to

-c
om

m
it 

P1 : TX1 TX2

P2 : TX4TX2

P12 : TX1 TX3 TX4

2a
.  

Pr
ep

ar
ed

1b
.  

Pr
ep

ar
e

2b
.  

Pr
ep

ar
ed

1a
.  

Pr
ep

ar
e

3.
  D

el
eg

at
e 

C
om

m
it

4a
.  

C
om

m
it 

6.
  C

om
m

it 
D

on
e P1 : (0,10]

P2 : (31,40]

P3 : (61,70]

P4 : (11,20]

P5 : (41,50]

P6 : (71,80]

P7 : (21,30]

P8 : (51,60]

P9 : (81,90]

Key-Value 
Service

5a
.  

C
om

m
itt

ed

4b
.  

C
om

m
it 

5b
.  

C
om

m
itt

ed

Fig. 5.3: Resolver architecture showing communication between resolver, coordinator, and partic-
ipants

125



Algorithm 3 Resolver API
1: function COMMITONBEHALF(𝑡𝑥𝑛, 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠)
2: Create a response channel for 𝑡𝑥𝑛
3: if 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 not empty then
4: Add 𝑡𝑥𝑛 and 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 to dependency graph
5: else
6: Add 𝑡𝑥𝑛 to all its participants’ queues
7: Call TRIGGERCOMMIT

8: Wait for 𝑡𝑥𝑛’s commit on response channel
9: function TRIGGERCOMMIT

10: for each 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 with non-empty queue do
11: 𝑡𝑥𝑛𝑠← remove all txns from 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡.𝑞𝑢𝑒𝑢𝑒

12: log commit decision for 𝑡𝑥𝑛𝑠 if not already logged
13: Send commit msg with 𝑡𝑥𝑛𝑠 to 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡
14: Wait for all participants to respond
15: // Collect txns whose all participants have committed
16: 𝑑𝑜𝑛𝑒_𝑡𝑥𝑛𝑠← get transactions fully completed
17: for each 𝑡𝑥𝑛 in 𝑑𝑜𝑛𝑒_𝑡𝑥𝑛𝑠 do
18: Notify through txn’s response channel
19: Call REGISTERCOMMITTEDTXS on 𝑑𝑜𝑛𝑒_𝑡𝑥𝑛𝑠
20: function REGISTERCOMMITTEDTXS(𝑡𝑥𝑛𝑠)
21: 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ← 𝑡𝑥𝑛𝑠

22: while 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 not empty do
23: Pop 𝑡𝑥𝑛 from 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡

24: for each 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 of 𝑡𝑥𝑛 do
25: Remove dependency edge (𝑡𝑥𝑛→ 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡)
26: if 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 has no remaining dependencies then
27: Add 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 to 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡
28: Add 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 to all its participants’ queues
29: Call TRIGGERCOMMIT

have committed their respective queued transactions, the Resolver notifies the coordinator that the

transaction is fully committed.

The Resolver exposes the following API as shown in Algorithm 3. The commitOnBehalf

function is called by coordinators to delegate commit coordination to the Resolver. When invoked,

it first creates a response channel for the transaction to establish communication with the coor-

dinator for reporting the final commit status. If no dependencies are detected, the transaction is

immediately added to all its participants’ queues and the Resolver triggers a commit by calling

126



triggerCommit. Otherwise, the transaction and its dependencies are added to the dependency

graph. The coordinator then waits for the transaction’s commit status on the response channel.

The triggerCommit internal function orchestrates the group commit process by extracting

ready transactions from participant queues and initiating their commit phase. It sends commit

messages — each containing a batch of transactions — to the appropriate participants and waits

for their responses. As participants reply, the Resolver identifies transactions whose all participants

have committed. For each such transaction, it notifies the original coordinator via the transaction’s

pre-established response channel. Finally, it invokes registerCommittedTXs to process the

completed transactions, which updates the dependency graph and may trigger additional commits

for newly unblocked transactions.

The registerCommittedTXs function updates the dependency graph when transactions

complete their commit phase. It can be invoked internally by the Resolver when it coordinates a

commit to completion, or externally by coordinators that bypassed the Resolver for transactions

with no active dependencies. Upon receiving a list of committed transactions, the Resolver re-

moves them from the dependency graph and iteratively identifies and processes newly unblocked

transactions, cascading this process until no further transactions are unblocked. These are then

enqueued in their corresponding participant queues. If any new transactions became ready to com-

mit, the Resolver invokes triggerCommit to initiate group commits as previously described.

Even when the Resolver is bypassed, notifying it of committed transactions remains essential to

unblock any downstream transactions that may depend on them. This dependency tracking mecha-

nism ensures that transactions are committed in the correct order while enabling efficient batching

through coordinated group commits.

5.5 Sangria

Our goal is to allow a distributed database to dynamically adapt its commit algorithm based on

runtime conditions. To this end, we introduce Sangria, a novel distributed commit protocol that

generalizes both Strict-2PC and Pipelined-2PC.

127



Algorithm 4 COORDINATOR COMMIT PROTOCOL

1: procedure COMMIT(transaction_id)
2: // Prepare Phase
3: RL← 𝑔𝑒𝑡𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑎𝑡𝑠(resolver_load)
4: CL← 𝑔𝑒𝑡𝐿𝑜𝑐𝑎𝑙𝑆𝑡𝑎𝑡𝑠(contention_level)
5: for all participant ∈ participants do
6: send PREPARE(RL,CL) to participant
7: wait for all PREPARERESPONSES

8: collect locking decisions and dependencies from responses
9: // Decide Commit Path

10: if dependencies ≠ ∅ then
11: // Delegate to Resolver
12: send COMMITONBEHALF with dependencies to Resolver
13: await Resolver completion
14: else
15: // Direct Commit Path
16: persist transaction decision to durable storage
17: for all participant ∈ participants do
18: send COMMIT to participant
19: wait for all participants to complete
20: if any participant released locks early then
21: notify Resolver of committed transaction (async)

5.5.1 Overview

Sangria allows each participant involved in a transaction to independently decide whether to

release locks early (pipelining) or hold them conservatively (strict). These decisions are informed

by lightweight signals collected and reported by the coordinator, such as the current load of the

Resolver signaling its ability to resolve dependencies efficiently, and metrics about the contention

level across participants. Participants communicate their decisions back to the coordinator, which

determines if any interaction with the Resolver is needed. This hybrid design enables Sangria to

dynamically range from fully serialized to aggressively pipelined commit modes — based on live

workload conditions.

128



5.5.2 Coordinator Commit Protocol

Algorithm 4 presents the pseudocode for the coordinator’s behavior during commit. The coor-

dinator collects statistics locally about the current load of the Resolver and the contention levels

of participants and includes this information in the PREPARE messages sent to each participant.

The PREPARERESPONSES contain each participant’s locking decision (early release or conserva-

tive hold) and any declared dependencies on previously executing transactions. If any participant

reports unresolved dependencies (due to early lock release over conflicting keys), the coordinator

invokes the commitOnBehalf API on the Resolver, delegating commit resolution. The resolver

then manages dependency tracking and group commits as discussed in §5.4. If no dependencies

are reported, the coordinator commits the transaction directly: it writes the transaction decision to

durable storage, sends COMMIT messages to all participants, and waits for acknowledgments. Fi-

nally, if any participant performed early lock release, the coordinator asynchronously informs the

Resolver when the transaction is committed via the registerCommittedTXs API, enabling it

to unblock downstream dependents.

5.5.3 Participant Prepare Procedure

Algorithm 5 describes the participant’s logic. Upon receiving a prepare request, the participant

first validates the transaction and performs local checks. Then, it tracks and updates dependencies

for the requested key, accordingly. If the key was last updated by a transaction whose commit is

still pending, the participant records a dependency on that transaction. It then evaluates whether

early lock release is beneficial and chooses the commit mode accordingly, guided by the contention

level and the Resolver load included in the request. Depending on the commit mode selected, the

key’s dependency info is updated either to the current transaction or to EMPTY. The participant

appends a prepare record to its WAL buffer and then releases the lock if the commit mode selected

is early release. Once the WAL buffer is flushed, the participant returns a PREPARERESULT that

includes an optional dependency and the selected commit mode. These results allow the coordi-

nator to decide whether to delegate to the Resolver or commit the transaction directly. Note that

129



Algorithm 5 PARTICIPANT PREPARE PROCEDURE

1: procedure PREPARE(transaction, prepare_request)
2: Perform validation checks
3: 𝑅𝐿 ← prepare_request.resolver_load
4: 𝐶𝐿 ← prepare_request.contention_level
5: 𝐾𝐸𝑌 ← prepare_request.key
6: // Record and update dependencies
7: if 𝐾𝐸𝑌 has existing pending writer transaction then
8: record dependency on pending writer transaction
9: 𝑐𝑜𝑚𝑚𝑖𝑡_𝑚𝑜𝑑𝑒 ← CHOOSECOMMITSTRATEGY(RL,CL)

10: if 𝑐𝑜𝑚𝑚𝑖𝑡_𝑚𝑜𝑑𝑒 is early release then
11: set key’s pending writer to current transaction
12: else
13: set key’s pending writer to EMPTY

14: append prepare record to WAL buffer
15: if commit_mode is early release then
16: release lock
17: flush WAL buffer asynchronously
18: wait for WAL flush completion
19: return PREPARERESULT with possible dependency and commit_mode

for simplicity, we describe each participant as managing a single key and omit differences in be-

havior when a key is read but not written. In practice, participants may hold multiple keys, and the

protocol handles read-only keys differently; dependency tracking and commit mode selection are

performed independently per key.

5.5.4 Discussion

Sangria generalizes both Strict-2PC and Pipelined-2PC by treating commit strategy as a per-

participant decision rather than a system-wide choice. The centralized Resolver allows the system

to maintain correctness in the presence of early lock release by managing dependencies and coor-

dinating group commits in the right order. Importantly, enabling this adaptive behavior required

lightweight extensions to the 2PC protocol. We augmented PREPARE and PREPARERESPONSE

messages to carry contextual information: Resolver load, locking decisions, and dependencies.

This extra information enables participants to make informed decisions and coordinators to route

transactions along the most efficient commit path.

130



5.5.5 Adaptive Decision Logic

As a proxy for Resolver load, the coordinator periodically pings the Resolver to obtain the

current length of its queue of transactions waiting to commit. To improve stability and avoid

reacting to transient spikes, the coordinator maintains a history of the last 200 queue-length ob-

servations and computes the average. For contention, the coordinator tracks the number of open

client connections and monitors how requests are distributed across keys. Both the Resolver load

and contention metrics are included in the PREPARE request sent to each participant. Participants

also evaluate local contention proxies such as the number of transactions waiting on key-level locks

and the number of pending commits.

Based on these inputs, they apply empirically-tuned thresholds to decide whether early lock

release is likely to be beneficial. These thresholds define the regimes in which Sangria should

perform early lock release or fall back to traditional locking, allowing the protocol to adapt dy-

namically to workload and system state.

5.5.6 Correctness Guarantees

Our adaptive protocol maintains the same correctness guarantees as the underlying Strict-2PC

and Pipelined-2PC protocols.

Atomicity. All-or-nothing execution is preserved through the 2PC structure. The coordinator en-

sures that either all participants commit or all abort, regardless of the selected commit mode.

Consistency. Database consistency is maintained through proper isolation mechanisms. In Strict-

2PC mode, strict 2PL ensures serializable execution. In Pipelined-2PC mode, the Resolver com-

ponent manages dependencies to prevent violations of serializability.

Durability. Both protocol modes ensure durability through write-ahead logging (WAL) as de-

scribed in the algorithms. Participants write prepare records to persistent storage before voting to

commit, guaranteeing that committed transactions survive system failures.

131



Isolation. The protocol enforces isolation using different strategies based on the chosen mode. In

Strict-2PC mode, 2PL guarantees strict serializability. In contrast, when operating in Pipelined-

2PC mode, the Resolver component (see Algorithm 3) upholds the same isolation level by moni-

toring transaction dependencies and enforcing correct commit order.

5.6 Evaluation

In this section, we evaluate the performance and adaptability of Sangria, our proposed commit

protocol. We seek to answer the following key questions:

• Q1: How does Sangria perform under workloads with different contention levels and different

Resolver capacities?

• Q2: How effectively does Sangria respond to runtime variations in contention intensity and

Resolver capacity?

• Q3: How does Sangria perform with mixed workloads of varying contention levels?

• Q4: How well does the centralized Resolver perform in grouping and processing transactions

in batches?

5.6.1 Methodology

Baselines. We evaluate Sangria by comparing it against the two foundational baselines, Strict-2PC

and our version of Pipelined-2PC that uses the centralized Resolver.

Metrics. We focus on two primary metrics:

• Throughput: number of committed transactions per second.

Machine. All experiments are run on a 16 core Cloudlab server with 2 threads per core and 128

GiB RAM (type c220g1). We use a single-node setup to precisely control the resources allocated

132



to each component by pinning services to specific CPU cores. Our focus is not on stretching scala-

bility to extreme cluster sizes, but rather on understanding the performance trade-offs of adaptivity

in a tightly controlled environment.

Experimental Setup. Our prototype builds on Chardonnay [159], a distributed key-value store

that employs strict 2PL in combination with 2PC to ensure atomicity and strict serializability. To

enable a clean evaluation of the tradeoff space between workload contention levels and Resolver

capacity, we create an execution environment that is isolated from abort-induced artifacts. This

is achieved by avoiding deadlocks, which are the primary source of aborts in 2PL-based systems.

With Chardonnay, the set of keys accessed by each transaction is known ahead of time, which

allows it to acquire locks in a globally consistent order, ensuring that circular wait conditions do

not occur.

The system shards data horizontally across shared-nothing range servers, each responsible for a

configurable number of key ranges. In our setup, one CPU core is dedicated to the Resolver, while

two additional cores are used to generate background load on the Resolver in order to modulate its

available capacity. The remaining cores support the main workload generator (whose performance

we evaluate), as well as the coordinator and range server components.

5.6.2 Workloads

We test Sangria under two workloads: the standard Yahoo! Cloud Serving Benchmark (YCSB)

benchmark [89] and a custom synthetic workload generator we developed. In the experiments

that use the custom workload generator, the number of keys are fixed, transactions are gener-

ated concurrently by multiple clients, and each transaction accesses exactly two distinct keys

selected uniformly at random. To control contention, we introduce a tunable parameter called

concurrency-level, which determines the number of clients issuing transactions in paral-

lel. Each client operates in a closed loop, issuing one transaction at a time. For a fixed key set,

increasing concurrency-level raises the probability of key overlap between transactions,

thereby increasing contention. This concurrency model mirrors that of widely used benchmarking

133



tools such as BenchBase [161], where the same parameter is used to modulate parallelism and

contention pressure during workload execution.

1 5 25 50 100 200 500
0

200
400
600
800

1,000
1,200
1,400

Tr
an

sa
ct

io
ns

/s
ec (a) Resolver Capacity: High

Sangria Pipelined-2PC Strict-2PC

1 5 25 50 100 200 500
0

200
400
600
800

1,000
1,200
1,400

Tr
an

sa
ct

io
ns

/s
ec (b) Resolver Capacity: Medium

1 5 25 50 100 200 500
0

200
400
600
800

1,000
1,200
1,400

Concurrency Level

Tr
an

sa
ct

io
ns

/s
ec (c) Resolver Capacity: Low

Fig. 5.4: (Q1) Throughput of the three protocols as a function of workload contention (x-axis: con-
currency level) under three different Resolver capacity settings (a) high capacity (no background
load), (b) medium capacity (moderate background load), and (c) low capacity (heavy background
load). Sangria is able to adapt its behavior based on the Resolver’s capacity and workload con-
tention, matching or exceeding the throughput of the baselines in all regimes.

5.6.3 Contention vs. Resolver Capacity (Q1)

We evaluate how Sangria performs across a spectrum of contention levels and Resolver ca-

pacities, using two complementary experimental setups: our custom workload generator and the

134



YCSB.

Custom Workload. We use 50 keys and vary contention using the concurrency-level parameter, as

described above. Figure 5.4 presents the results of this experiment. It consists of three subfigures,

each corresponding to a different level of Resolver capacity, which we control using a secondary

workload generator. This generator executes background transactions that consume the Resolver’s

resources by issuing RPCs, entering the dependency graph, acquiring internal locks, and so on. We

control this background load by configuring the generator with three different concurrency levels:

0, 100, and 1000, which we refer to as high, medium, and low Resolver capacity, respectively.

When the background load is zero, the Resolver is idle and has maximal capacity. As a proxy

for Resolver load, we monitor the number of transactions waiting in response channels — i.e.,

transactions that are blocked waiting for the Resolver to finalize their commit.

Each subfigure shows throughput as a function of the main workload’s contention level. On

the x-axis, contention is varied by adjusting the concurrency level of the main workload gener-

ator. As an internal proxy for contention, the coordinator monitors system-wide metrics such as

the number of in-flight transactions (i.e., active client connections) and the distribution of requests

across keys. In addition, each participant tracks local indicators of contention, including the num-

ber of transactions waiting on key-level locks and the number of transactions whose commits are

pending.

In Figure 5.4(a), the Resolver operates at full capacity with no external load (high capacity). In

this case, the Pipelined-2PC baseline consistently outperforms Strict-2PC as contention increases.

With no Resolver bottlenecks, the benefits of early lock release always dominate, enabling higher

concurrency. The Sangria protocol closely follows the performance of Pipelined-2PC in this set-

ting, as it correctly favors early lock release when the Resolver is under minimal load.

In Figure 5.4(b), Resolver capacity is moderately constrained. We now observe a more nu-

anced behavior: at low contention levels, the overhead of coordinating through the Resolver out-

weighs the modest benefits of pipelining, making Strict-2PC more efficient. However, once the

contention level crosses a threshold (around concurrency equal to 100), pipelining becomes es-

135



sential to mitigate queuing delays caused by lock contention. Sangria identifies this crossover

point and adapts accordingly, falling back to Strict-2PC when pipelining is harmful and switching

only when pipelining yields tangible performance gains. We tune this threshold empirically in our

system.

In Figure 5.4(c), the Resolver is heavily overloaded (low capacity). Under these conditions,

pipelining offers diminishing returns when contention is low-to-moderate: the Resolver becomes

the bottleneck, and the added overhead of dependency tracking and queueing outweighs the bene-

fits of early lock release. Only at the highest contention levels (concurrency ≥ 200) do the advan-

tages of pipelining re-emerge. Again, Sangria adapts its behavior accordingly, choosing Strict-2PC

in the low or moderate contention regime and gradually shifting toward pipelining as contention

intensifies.

Notice that across all Resolver capacities, at the lowest contention level (concurrency=1), all

three protocols converge in performance: transactions do not conflict, dependencies never arise,

and the Resolver is bypassed entirely. The Pipelined-2PC baseline still asynchronously notifies the

Resolver of committed transactions to ensure correct dependency resolution for any future depen-

dents, but this occurs outside the critical path and thus has no effect on throughput. Conversely,

Sangria leans toward the Strict-2PC behavior in this regime to avoid introducing unnecessary over-

head to the Resolver from commit-notification messages.

Across all scenarios, Sangria navigates the two-dimensional trade-off between Resolver load

and contention effectively. It learns when to pipeline and when to revert to strict mode, delivering

performance close to the best static strategy in each regime.

YCSB. In (Figure 5.5), we introduce contention through a different mechanism than in prior sec-

tions. We fix the keyspace to 50 keys and configure the benchmark to use only read-modify-write

operations. Each YCSB operation is wrapped as a transaction by appending a commit step, effec-

tively transforming the workload into a transactional one. Each transaction operates on a single

key, which is sampled from a Zipfian distribution. We run the benchmark with 50 concurrent

clients (threads), each issuing transactions in a closed loop. We then vary the Zipfian constant

136



0 0.5 1
0

500
1,000
1,500
2,000
2,500
3,000

Tr
an

sa
ct

io
ns

/s
ec (a) Resolver Capacity: High

Sangria Pipelined-2PC Strict-2PC

0 0.5 1
0

500
1,000
1,500
2,000
2,500
3,000

Tr
an

sa
ct

io
ns

/s
ec (b) Resolver Capacity: Medium

0 0.5 1
0

500
1,000
1,500
2,000
2,500
3,000

Zipf Constant

Tr
an

sa
ct

io
ns

/s
ec (c) Resolver Capacity: Low

Fig. 5.5: (Q1) YCSB: Throughput comparison as contention increases (by increasing the Zipf
Constant) under varying Resolver capacities.

137



to control the skew in key access: a value of 0.0 yields uniform key selection, while increasing

the constant toward 1.0 leads to increasingly skewed workloads where a few keys are accessed

disproportionately often.

This setup allows us to systematically sweep from low- to high-contention scenarios while

holding other parameters constant. As shown in the figure, Sangria continues to match or exceed

the performance of the best static protocol across all regimes. In low-skew settings, it behaves

similarly to Strict-2PC by holding locks until commit. As the skew increases and contention con-

centrates on a small subset of keys, Sangria dynamically switches to early lock release for those

keys — matching the behavior of Pipelined-2PC — while conservatively holding locks for less

contended keys. This enables it to consistently deliver high throughput across the spectrum.

5.6.4 Online Adaptation (Q2)

While the previous set of experiments fixed workload characteristics — such as contention

level and Resolver capacity — in advance, the following experiments introduce dynamic runtime

variation in both dimensions using the custom workload generator. We issue 16,000 transactions,

each reading and then writing two keys selected uniformly at random without replacement.

Online Workload Contention Shift. In Figure 5.6, we present the throughput of each proto-

col under dynamic workload contention, plotted across three different Resolver capacities: high,

medium, and low. In all cases, the number of keys is fixed to 50, and the workload alternates

at runtime between low-contention (concurrency = 25) and high-contention (concurrency = 500)

phases. These alternating phases simulate realistic runtime variations that a distributed system may

encounter in production. The two baselines, Strict-2PC and Pipelined-2PC, apply a fixed commit

strategy for all transactions, regardless of workload shifts. As a result, they exhibit lower overall

throughput, as they cannot adapt to changing contention dynamics. In contrast, Sangria uses run-

time feedback from the coordinator — such as local traffic of transactions and the load observed on

the Resolver — to make commit path decisions on a per-transaction basis. This enables Sangria to

choose the most appropriate behavior at each phase. When contention spikes, pipelining becomes

138



high medium low
0

200

400

600

800

1,000

1,200

Resolver Capacity

Tr
an

sa
ct

io
ns

/s
ec

Sangria Pipelined-2PC Strict-2PC

Fig. 5.6: (Q2) Throughput of each protocol as workload contention alternates between low and
high phases at runtime, under three different resolver capacities (high, medium, low). Sangria
adapts to changing contention, matching or exceeding the best static baseline in each regime.

essential to mitigate long lock hold times; as expected, Strict-2PC suffers during these periods due

to its conservative locking and so its overall throughput declines. Conversely, when contention is

low and the capacity of the Resolver is limited (medium and low), the overhead of dependency

tracking and queue management outweighs the benefits of pipelining, causing Pipelined-2PC to

degrade and its overall throughput decreases similarly. Sangria is able to detect all these regimes

and switch accordingly. This ability to adapt to runtime variation demonstrates the robustness of

Sangria and highlights the importance of dynamic commit path selection.

Online Resolver Capacity Shift. We next evaluate how the protocols respond to online shifts in

Resolver capacity, while holding each experiment’s workload contention level fixed. Specifically,

we fix again the number of keys to 50 and evaluate three different contention regimes — low

(concurrency = 5), moderate (concurrency = 50), and high (concurrency = 500) — as shown in

Figure 5.7. For each contention regime, we dynamically vary Resolver load at runtime by adjusting

the concurrency level of a secondary background workload that interacts with the Resolver —

alternating between phases of low capacity (high background concurrency, heavily overloading the

139



5 50 500
0

200

400

600

800

1,000

1,200

1,400

Concurrency Level

Tr
an

sa
ct

io
ns

/s
ec

Sangria Pipelined-2PC Strict-2PC

Fig. 5.7: (Q2) Throughput of each protocol as resolver capacity alternates between high and low
phases at runtime, under three different concurrency levels (5, 50, 500). Sangria adapts to changing
resolver capacity, matching or exceeding the best static baseline in each regime.

Resolver) and high capacity (no background traffic). Across all contention regimes, the baselines

suffer when conditions deviate from their ideal operating assumptions. The Strict-2PC baseline

performs reliably when the Resolver is overloaded (i.e., low Resolver capacity), since it avoids any

coordination with the Resolver. However, it fails to leverage pipelining even when the Resolver is

idle yielding lower overall throughput. On the other hand, Pipelined-2PC performs best when the

Resolver is responsive, but incurs high coordination overhead and stalls when Resolver capacity

is low. Sangria, by contrast, dynamically adjusts its commit behavior in real time. As a result,

it matches or exceeds the best-performing baseline in each phase. For extremely high contention

levels (concurrency = 500), Sangria mirrors the behavior of Pipelined-2PC, as it identifies the

substantial benefits of pipelining even under low Resolver capacity.

5.6.5 Mixed Workloads (Q3)

To further highlight the fine-grained adaptability of Sangria, we run a workload composed of

both high-contention and low-contention transactions. Specifically, the keyspace is partitioned into

140



high medium low
0

200

400

600

800

1,000

1,200

1,400

Resolver Capacity

Tr
an

sa
ct

io
ns

/s
ec

Sangria Pipelined-2PC Strict-2PC

Fig. 5.8: (Q3) Throughput of each protocol under a mixed workload with both high-contention
(hot) and low-contention (cold) key regions, across three resolver capacities (high, medium, low).
Sangria dynamically applies pipelining for hot keys and strict commit for cold keys, matching or
exceeding the best baseline in each region.

100 keys, of which 50 are designated as hot and 50 as cold. We generate two disjoint workloads

targeting each key region: the hot keyset is accessed by 500 concurrent clients (high contention),

while the cold keyset is accessed by only 25 (low contention). This mixed workload introduces

asymmetric contention across the keyspace, simulating more realistic scenarios encountered in

multi-tenant or skewed-access applications.

In Figure 5.8, we report results for three levels of Resolver capacity: high, medium, and low.

The two foundational baselines, Strict-2PC and Pipelined-2PC, are static by design: they apply the

same commit strategy to all transactions, regardless of key-level contention or system state. As a

result, Pipelined-2PC incurs unnecessary dependency-tracking overhead when operating over the

cold keyset, where contention is minimal and Resolver use is avoidable. Conversely, Strict-2PC

suffers when operating over the hot keyset, as it holds locks throughout the entire commit process,

degrading concurrency.

In contrast, Sangria leverages its fine-grained decision mechanism to adjust behavior on a per-

141



participant basis. Each participant uses information about its local contention and the current load

on the Resolver, to determine whether to release locks early (enabling pipelining) or to follow a

traditional commit path. As a result, participants serving hot keys opt for pipelined behavior to im-

prove concurrency, while those operating on cold keys bypass the Resolver and avoid unnecessary

overhead.

This ability to apply different commit strategies within the same transaction workload leads

to significant gains. Across all Resolver configurations, Sangria consistently matches or outper-

forms both baselines. For high Resolver capacity, as shown in prior experiments, Pipelined-2PC

consistently outperforms Strict-2PC. Sangria achieves higher throughput by adapting its commit

behavior to the local contention profile and global system load, demonstrating that static policies

are insufficient in complex, mixed contention workloads.

5.6.6 Resolver Performance (Q4)

To better understand the internal behavior and batching effectiveness of the Resolver, we con-

duct a set of experiments measuring its ability to group transactions that become ready concur-

rently, thereby enabling them to commit in a single batched operation to the storage layer. In this

evaluation, we focus on the sizes of commit batches sent to the participants. For each batch cre-

ated by the Resolver, we record the number of transactions it contains, and we plot the cumulative

distribution function (CDF) over all observed batch sizes.

For comparison, we include the Strict-2PC baseline, which — by design — does not perform

any batching. Each transaction commits in isolation, resulting in a constant batch size of one. As

expected, its CDF is a step function that jumps immediately to 1. This serves as a lower bound and

helps visualize the relative gains of dependency-aware batching enabled by the Resolver.

We present two subfigures in Figure 5.9. In Figure 5.9(a), we fix the concurrency level to 500

— representing high contention — and vary the Resolver’s capacity by adjusting the background

load from the secondary workload. In Figure 5.9(b), we fix the Resolver’s capacity to its maximum

(i.e., no background load) and vary the primary workload’s concurrency level to vary contention.

142



5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Batch Size

C
D

F

Strict-2PC
Pipelined-2PC / Resolver Capacity: High
Pipelined-2PC / Resolver Capacity: Medium
Pipelined-2PC / Resolver Capacity: Low

(a) Batch size CDF under different Resolver capacities.

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

Batch Size

C
D

F Strict-2PC
Pipelined-2PC / Concurrency Level: 1
Pipelined-2PC / Concurrency Level: 5
Pipelined-2PC / Concurrency Level: 25
Pipelined-2PC / Concurrency Level: 50
Pipelined-2PC / Concurrency Level: 100
Pipelined-2PC / Concurrency Level: 200
Pipelined-2PC / Concurrency Level: 500

(b) Batch size CDF under different concurrency levels.

Fig. 5.9: (Q4) Cumulative distribution function (CDF) of batch sizes for commit groups formed
by the Resolver. (a) Varying Resolver capacity under high contention (concurrency = 500) shows
that lower capacity leads to larger batch sizes due to more transactions accumulating before being
unblocked. (b) Varying workload contention under maximum Resolver capacity demonstrates that
higher concurrency increases batching opportunities, while low contention results in mostly single-
transaction commits.

143



In Figure 5.9(a), we observe that under high contention, the Resolver is often able to batch

together multiple transactions that become unblocked simultaneously. As the Resolver’s capacity

decreases, the CDF curve becomes smoother and shifts rightward, indicating larger batch sizes.

This happens because reduced Resolver responsiveness causes transactions to accumulate in the

dependency graph. When a dependency is resolved, a larger set of transactions may be unblocked

at once and committed as a group. Thus, even though the Resolver is slower, the batching effect

helps mitigate performance degradation — highlighting a self-compensating behavior under high

contention and constrained Resolver capacity.

In contrast, Figure 5.9(b) shows the impact of varying contention levels under maximmum

Resolver capacity. As expected, higher concurrency increases the likelihood of transaction depen-

dencies, leading to more opportunities for batching. The CDF curves for higher concurrency levels

(e.g., 500) have more gradual slopes than those with lower concurrency (e.g., 5), reflecting an in-

crease in batch size. However, batch sizes remain smaller compared to those in Figure 5.9(a), since

the responsive Resolver processes transactions quickly, reducing the likelihood that large groups

of transactions will accumulate before resolution.

These results demonstrate the ability of the Resolver to maximize batching opportunities. Even

under constrained capacity, it can batch transactions to improve overall throughput.

5.7 Related Work

Early Lock Release. Relaxing strict 2PL to increase concurrency by releasing locks at earlier

stages [156, 162] is a technique that was applied to single-node databases with large buffer pools,

since a transaction may run in less time than it takes to log the transaction’s commit record on

stable storage [157], and was later rigorously formalized and further developed in works such as

controlled lock violation [157] and Bamboo [155]. The distributed forms of this technique have

recently been proposed to optimize performance in distributed databases [163]. Orleans [154]

pioneered the use of a distributed form of early lock release by releasing all locks of a transaction

during phase one of 2PC. These works always apply early lock release and, therefore, are not

144



adaptive.

Commit Dependencies and Resolvers. The notion of commit dependency was introduced in

the ACTA framework [164]. We know of few prior works that use the concept.

In Speculative Locking (SL) [165], if a transaction 𝑇1 updates x and a later transaction 𝑇2 reads

x, then 𝑇2 speculates by having two incarnations, 𝑇21 that reads 𝑇1’s before-image of x and 𝑇22 that

reads its after-image [42]. 𝑇21 and 𝑇22 both take a commit dependency on 𝑇1. If 𝑇1 commits, 𝑇22

is retained, else 𝑇21 is retained. The simulation study [165] of a distributed DBMS shows that SL

gets better throughput than 2PL by overlapping speculative executions of 𝑇2 with 𝑇1, at the cost of

more CPU load. By contrast, in our design, 𝑇2 only takes a dependency on 𝑇1 after 𝑇1 terminates

so it has no more CPU load.

Microsoft’s Hekaton uses a more limited form of commit dependency [166]. It allows𝑇2 to take

a commit dependency on 𝑇1 if 𝑇2 started after 𝑇1 finished execution and entered the validation phase

but has not yet committed. Thus, it benefits from overlapping 𝑇2’s execution with 𝑇1’s validation.

Orleans’ [154] transactions track their commit dependencies on other transactions that have

yet to complete 2PC and implement cascading abort by aborting if any commit dependency fails

to commit. An earlier design [153] used a centralized resolver, called Transaction Manager, in a

fashion similar to the Resolver in our design, but had to involve the transaction manager in every

transaction, causing it to be a scalability bottleneck.

Handling Skewed Workloads. TurboDB [167] takes a different approach in handling skewed

workloads, by assigning records in the highly contended subset of the database to a single node

subsystem (called the turbo) within an otherwise distributed and sharded DBMS. The turbo can

utilize single-node optimizations and performance multipliers allowing it to handle the skewed,

contended records efficiently. For this approach to work effectively, it assumes that the popularity

of records is stable over time, making it less dynamic and adaptive than our Sangria design. Fur-

thermore, while we also introduce a singleton component in the Resolver, the work it needs to do

per transaction is much less than the turbo in TurboDB, and hence we expect to be able to achieve

higher scalability.

145



5.8 Future Work

This work opens several avenues for future exploration. First, while Sangria uses empirically

tuned thresholds to determine when to switch between commit protocols, future systems could ben-

efit from learning-based approaches that automatically infer regime boundaries based on runtime

signals. Additionally, richer proxies for workload contention such as the average time transactions

wait on participant locks could improve decision making even more.

Second, our current batching mechanism at the Resolver is opportunistic. Introducing lightweight

scheduling techniques could help shape batch formation in a more controlled way, potentially im-

proving commit efficiency and better exploiting the pipelining benefits under diverse load condi-

tions.

Finally, our results suggest that adaptivity in distributed transaction processing is a promising

and underexplored direction. Beyond commit protocol selection, adaptive techniques could be

extended to other layers of the transaction stack, including concurrency control mechanisms or

protocols that benefit from early lock release. Developing general principles for runtime-aware

adaptation in distributed systems remains an exciting area for future work.

5.9 Conclusions

We presented Sangria, an adaptive 2PC protocol that dynamically switches between strict and

pipelined commit strategies based on runtime conditions. By monitoring real-time signals such as

workload contention and Resolver load, Sangria selects the most efficient commit path, achieving

up to 1.61× higher throughput than the best static baseline in our experiments.

Our key contribution is a runtime-aware decision mechanism that adapts commit behavior to

live workload conditions while preserving full ACID semantics. To our knowledge, Sangria is the

first commit protocol to incorporate such adaptive capabilities.

146



Conclusion

This thesis explored the design of efficient systems under resource constraints, spanning two

distinct domains: privacy-preserving computation and distributed transaction processing. In the

first part of the thesis, we treated privacy as a scarce and quantifiable system resource. Through

the systems DPack, Turbo, and Cookie Monster, we developed new techniques for maximizing

utility under fixed differential privacy (DP) budgets. These systems addressed different layers

of the privacy stack—from workload scheduling to caching to on-device budgeting for DP-based

ad measurement —but shared a common goal: increasing the usefulness of private data while

respecting strict privacy guarantees. Collectively, these contributions offer practical ways to close

the growing gap between the theoretical promise of DP and its real-world applicability.

The second part of the thesis shifted to a more classical systems challenge: improving the

throughput of distributed transaction processing. With Sangria, we showed how commit proto-

cols can dynamically adapt to runtime conditions to better manage coordination overhead and

contention. While this work does not involve privacy, it reinforces a central thesis goal: resource-

aware design that adjusts to workload and system variability to improve efficiency.

Together, these contributions highlight two broader takeaways. First, systems can benefit from

treating non-traditional resources—like privacy budgets—as first-class constraints, worthy of al-

gorithmic and systems-level attention. Second, adaptability is key: whether in scheduling DP

workloads or coordinating transactions, systems that respond to changing conditions can deliver

significantly better performance under tight constraints.

147



References

[1] C. Dwork, A. Smith, T. Steinke, and J. Ullman, “Exposed! A survey of attacks on private
data,” Annual Review of Statistics and Its Application, 2017.

[2] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret sharer: Evaluating and
testing unintended memorization in neural networks,” in 28th USENIX Security Sympo-
sium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, N. Heninger
and P. Traynor, Eds., USENIX Association, 2019, pp. 267–284.

[3] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against
machine learning models,” in sp, 2017.

[4] N. Carlini et al., “Extracting training data from large language models,” in 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021, M. Bailey and R. Green-
stadt, Eds., USENIX Association, 2021, pp. 2633–2650.

[5] M. Nasr et al., Scalable extraction of training data from (production) language models,
2023. arXiv: 2311.17035 [cs.LG].

[6] I. Dinur and K. Nissim, “Revealing information while preserving privacy,” in pods, 2003.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in pri-
vate data analysis,” in tcc, 2006.

[8] T. Luo, M. Pan, P. Tholoniat, A. Cidon, R. Geambasu, and M. Lécuyer, “Privacy budget
scheduling,” in 15th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 21), USENIX Association, Jul. 2021, pp. 55–74, ISBN: 978-1-939133-22-9.

[9] M. Lécuyer, R. Spahn, K. Vodrahalli, R. Geambasu, and D. Hsu, “Privacy Accounting and
Quality Control in the Sage Differentially Private ML Platform,” in sosp, 2019.

[10] N. Küchler, E. Opel, H. Lycklama, A. Viand, and A. Hithnawi, “Cohere: Managing differ-
ential privacy in large scale systems,” in 2024 IEEE Symposium on Security and Privacy
(SP), IEEE, 2024, pp. 991–1008.

[11] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan, “Altruistic scheduling in
multi-resource clusters,” in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA: USENIX Association, Nov. 2016, pp. 65–80,
ISBN: 978-1-931971-33-1.

148

https://arxiv.org/abs/2311.17035


[12] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “HUG: Multi-resource fairness for corre-
lated and elastic demands,” in 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), Santa Clara, CA: USENIX Association, Mar. 2016, pp. 407–
424, ISBN: 978-1-931971-29-4.

[13] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multiresource allocation: Fairness–efficiency
tradeoffs in a unifying framework,” IEEE/ACM Transactions on Networking, vol. 21, no. 6,
pp. 1785–1798, 2013.

[14] A. Gutman and N. Nisan, “Fair allocation without trade,” in Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems - Volume 2, ser. AA-
MAS ’12, Valencia, Spain: International Foundation for Autonomous Agents and Multia-
gent Systems, 2012, 719âĂŞ728, ISBN: 0981738125.

[15] D. C. Parkes, A. D. Procaccia, and N. Shah, “Beyond dominant resource fairness: Exten-
sions, limitations, and indivisibilities,” ACM Transactions on Economics and Computation
(TEAC), vol. 3, no. 1, pp. 1–22, 2015.

[16] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella, “Multi-resource pack-
ing for cluster schedulers,” in Proceedings of the 2014 ACM Conference on SIGCOMM,
ser. SIGCOMM ’14, Chicago, Illinois, USA: Association for Computing Machinery, 2014,
455âĂŞ466, ISBN: 9781450328364.

[17] Q. Weng et al., “MLaaS in the wild: Workload analysis and scheduling in Large-Scale
heterogeneous GPU clusters,” in 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), Renton, WA: USENIX Association, Apr. 2022, pp. 945–
960, ISBN: 978-1-939133-27-4.

[18] M. Backes, P. Berrang, M. Humbert, and P. Manoharan, “Membership privacy in microRNA-
based studies,” in ccs, 2016.

[19] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan, “Robust traceability from trace
amounts,” in focs, 2015.

[20] N. Homer et al., “Resolving individuals contributing trace amounts of DNA to highly com-
plex mixtures using high-density SNP genotyping microarrays,” PLoS Genetics, 2008.

[21] B. Jayaraman and D. Evans, “Evaluating differentially private machine learning in prac-
tice,” in usenixsec, 2019.

[22] S. Vadhan, “The complexity of differential privacy,” in Tutorials on the Foundations of
Cryptography, 2017.

[23] I. Mironov, “Rényi Differential Privacy,” in Computer Security Foundations Symposium
(CSF), 2017.

149



[24] Google Differential Privacy, https://github.com/google/differential-privacy/
tree/main/python/dp_accounting, 2022.

[25] Google, TensorFlow Privacy, https://github.com/tensorflow/privacy,
Accessed: 2020-11-10.

[26] Facebook, Opacus, https://opacus.ai/, Accessed: 2020-11-10.

[27] J. Murtagh and S. Vadhan, “The Complexity of Computing the Optimal Composition of
Differential Privacy,” in Theory of Cryptography, Berlin, Germany: Springer, Dec. 2015,
pp. 157–175.

[28] TensorFlow Extended Guide, https://www.tensorflow.org/tfx/guide/examplegen,
2022.

[29] R. J. Wilson, C. Y. Zhang, W. Lam, D. Desfontaines, D. Simmons-Marengo, and B. Gip-
son, “Differentially private sql with bounded user contribution,” Proceedings on Privacy
Enhancing Technologies, vol. 2020, no. 2, pp. 230–250, 2020.

[30] S. Berghel et al., “Tumult Analytics: a robust, easy-to-use, scalable, and expressive frame-
work for differential privacy,” arXiv, Dec. 2022. eprint: 2212.04133.

[31] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems. Springer, 2004, ISBN: 978-
3-540-40286-2.

[32] Gurobi Optimization, Gurobi Optimization homepage, www.gurobi.com/, 2021.

[33] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for vector bin packing,”
Tech. Rep., 2011.

[34] T. Luo, M. Pan, P. Tholoniat, A. Cidon, R. Geambasu, and M. Lécuyer, Privacy Resource
Scheduling (extended version), https://github.com/columbia/privatekube,
2021.

[35] R. M. Rogers, A. Roth, J. Ullman, and S. Vadhan, “Privacy odometers and filters: Pay-as-
you-go composition,” in nips, 2016.

[36] V. Feldman and T. Zrnic, “Individual privacy accounting via a renyi filter,” in Thirty-Fifth
Conference on Neural Information Processing Systems, 2021.

[37] M. Lécuyer, “Practical Privacy Filters and Odometers with RÃl’nyi Differential Privacy
and Applications to Differentially Private Deep Learning,” in arXiv, v2, 2021.

[38] Goop generalized mixed integer optimization in Go, Goop homepage, https://github.
com/mit-drl/goop/, 2021.

150

https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/tensorflow/privacy
https://opacus.ai/
https://www.tensorflow.org/tfx/guide/examplegen
2212.04133
www.gurobi.com/
https://github.com/columbia/privatekube
https://github.com/mit-drl/goop/
https://github.com/mit-drl/goop/


[39] Simpy, Discrete event simulation for Python, https://simpy.readthedocs.io/
en/latest/index.html, 2020.

[40] Q. Li, Z. Wu, Z. Wen, and B. He, “Privacy-preserving gradient boosting decision trees,”
in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, AAAI Press, 2020, pp. 784–791.

[41] N. Grislain and J. Gonzalvez, “Dp-xgboost: Private machine learning at scale,” CoRR,
vol. abs/2110.12770, 2021. arXiv: 2110.12770.

[42] M. Abadi et al., “Deep learning with differential privacy,” in ccs, 2016.

[43] P. Kairouz, B. McMahan, S. Song, O. Thakkar, A. Thakurta, and Z. Xu, “Practical and
private (deep) learning without sampling or shuffling,” in Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
M. Meila and T. Zhang, Eds., ser. Proceedings of Machine Learning Research, vol. 139,
PMLR, 2021, pp. 5213–5225.

[44] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using distantly-labeled reviews
and fine-grained aspects,” in Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP)., Hong Kong, China: Association for Computa-
tional Linguistics. https://nijianmo.github.io/amazon/index.html,
Nov. 2019, pp. 188–197.

[45] L. T. Kou and G. Markowsky, “Multidimensional bin packing algorithms,” IBM Journal of
Research and development, vol. 21, no. 5, pp. 443–448, 1977.

[46] Y. Azar, I. R. Cohen, S. Kamara, and B. Shepherd, “Tight bounds for online vector bin
packing,” in Proceedings of the forty-fifth annual ACM symposium on Theory of Comput-
ing, 2013, pp. 961–970.

[47] G. J. Woeginger, “There is no asymptotic PTAS for two-dimensional vector packing,” In-
formation Processing Letters, vol. 64, no. 6, pp. 293–297, 1997.

[48] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “Graphene: Packing and dependency-
aware scheduling for data-parallel clusters,” in Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation, ser. OSDI’16, Savannah, GA,
USA: USENIX Association, 2016, 81âĂŞ97, ISBN: 9781931971331.

[49] J. Gu et al., “Tiresias: A GPU cluster manager for distributed deep learning,” in USENIX
NSDI, 2019, pp. 485–500.

151

https://simpy.readthedocs.io/en/latest/index.html
https://simpy.readthedocs.io/en/latest/index.html
https://arxiv.org/abs/2110.12770
https://nijianmo.github.io/amazon/index.html


[50] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, “Domi-
nant resource fairness: Fair allocation of multiple resource types,” in Proceedings of the
8th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2011,
Boston, MA, USA, March 30 - April 1, 2011, D. G. Andersen and S. Ratnasamy, Eds.,
USENIX Association, 2011.

[51] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex, “Differentially private model publishing
for deep learning,” in sp, 2019.

[52] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differentially private
recurrent language models,” in iclr, 2018.

[53] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar, “Privacy, ac-
curacy, and consistency too: A holistic solution to contingency table release,” in sigmod,
2007.

[54] J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett, “Differentially private his-
togram publication,” in icde, 2012.

[55] OpenDP, https://smartnoise.org/, Accessed: 2020-11-10.

[56] IBM, Diffprivlib, https://github.com/IBM/differential- privacy-
library, Accessed: 2020-12-7.

[57] Google, Differential Privacy, https://github.com/google/differential-
privacy/, Accessed: 2020-11-10.

[58] M. Hardt and G. N. Rothblum, “A multiplicative weights mechanism for privacy-preserving
data analysis,” in Symposium on Foundations of Computer Science, 2010.

[59] R. Cummings, S. Krehbiel, K. A. Lai, and U. Tantipongpipat, “Differential privacy for
growing databases,” in nips, 2018.

[60] F. D. McSherry, “Privacy integrated queries: An extensible platform for privacy-preserving
data analysis,” in sigmod, 2009.

[61] D. Proserpio, S. Goldberg, and F. McSherry, “Calibrating data to sensitivity in private data
analysis: A platform for differentially-private analysis of weighted datasets,” vldb, 2014.

[62] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel, “Airavat: Security and privacy
for MapReduce.,” in nsdi, 2010.

[63] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, “GUPT: Privacy preserving data
analysis made easy,” in Proc. of the 2012 ACM SIGMOD International Conference on
Management of Data, 2012.

152

https://smartnoise.org/
https://github.com/IBM/differential-privacy-library
https://github.com/IBM/differential-privacy-library
https://github.com/google/differential-privacy/
https://github.com/google/differential-privacy/


[64] S. Garfinkel, J. M. Abowd, and C. Martindale, “Understanding database reconstruction
attacks on public data,” Communications of the ACM, 2019.

[65] A. Cohen and K. Nissim, “Linear program reconstruction in practice,” Journal of Privacy
and Confidentiality, 2020.

[66] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,” in
sp, 2008.

[67] NOT-OD-17-110: Request for Comments: Proposal to Update Data Management of Ge-
nomic Summary Results Under the NIH Genomic Data Sharing Policy, [Online; accessed
17. Apr. 2023], Apr. 2023.

[68] Citibike system data, https://www.citibikenyc.com/system-data, 2018.

[69] D. Desfontaines, Real world DP use-cases, https://desfontain.es/privacy/
real-world-differential-privacy.html, Accessed: 2023-04-13.

[70] S. Bavadekar et al., “Google COVID-19 Search Trends Symptoms Dataset: Anonymization
Process Description (version 1.0),” arXiv, Sep. 2020. eprint: 2009.01265.

[71] R. Rogers et al., “Linkedin’s audience engagements api: A privacy preserving data analyt-
ics system at scale,” arXiv preprint arXiv:2002.05839, 2020.

[72] N. Johnson, J. P. Near, J. M. Hellerstein, and D. Song, “Chorus: A programming framework
for building scalable differential privacy mechanisms,” in 2020 IEEE European Symposium
on Security and Privacy (EuroS&P), 2020, pp. 535–551.

[73] J. M. Abowd et al., “The 2020 census disclosure avoidance system topdown algorithm,”
Harvard Data Science Review, no. Special Issue 2, 2022.

[74] I. Dinur and K. Nissim, “Revealing information while preserving privacy,” in sigmod, 2003.

[75] M. Hardt and G. N. Rothblum, “A multiplicative weights mechanism for privacy-preserving
data analysis,” in 2010 IEEE 51st Annual Symposium on Foundations of Computer Science,
2010, pp. 61–70.

[76] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel, “Unique in the crowd:
The privacy bounds of human mobility,” Scientific reports, 2013.

[77] S. R. Ganta, S. Kasiviswanathan, and A. Smith, “Composition attacks and auxiliary infor-
mation in data privacy,” in kdd, 2008.

[78] L. Wasserman and S. Zhou, “A statistical framework for differential privacy,” Journal of
the American Statistical Association, 2010.

153

https://www.citibikenyc.com/system-data
https://desfontain.es/privacy/real-world-differential-privacy.html 
https://desfontain.es/privacy/real-world-differential-privacy.html 
2009.01265


[79] J. Dong, A. Roth, and W. J. Su, “Gaussian differential privacy,” Journal of the Royal Sta-
tistical Society Series B: Statistical Methodology, 2022.

[80] J. Hsu et al., “Differential privacy: An economic method for choosing epsilon,” vol. 2014,
Jul. 2014.

[81] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Foundations
and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014.

[82] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica, “BlinkDB:
Queries with bounded errors and bounded response times on very large data,” in Proceed-
ings of the 8th ACM European conference on computer systems, 2013, pp. 29–42.

[83] F. McSherry, “Privacy integrated queries: An extensible platform for privacy-preserving
data analysis,” in Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009,
U. Çetintemel, S. B. Zdonik, D. Kossmann, and N. Tatbul, Eds., ACM, 2009, pp. 19–30.

[84] J. Smith, H. J. Asghar, G. Gioiosa, S. Mrabet, S. Gaspers, and P. Tyler, “Making the most
of parallel composition in differential privacy,” Proc. Priv. Enhancing Technol., vol. 2022,
no. 1, pp. 253–273, 2022.

[85] S. Vadhan, “The Complexity of Differential Privacy,” in Tutorials on the Foundations of
Cryptography, Cham, Switzerland: Springer, Apr. 2017, pp. 347–450.

[86] T. Liu, G. Vietri, T. Steinke, J. Ullman, and S. Wu, “Leveraging public data for practical
private query release,” in Proceedings of the 38th International Conference on Machine
Learning, M. Meila and T. Zhang, Eds., ser. Proceedings of Machine Learning Research,
vol. 139, PMLR, 2021, pp. 6968–6977.

[87] Tableau, https://public.tableau.com/app/discover, Accessed: 2023-04-
13.

[88] Citibike tableau story, https://public.tableau.com/app/profile/james.
jeffrey/viz/CitiBikeRideAnalyzer/CitiBikeRdeAnalyzer, Accessed:
2023-04-13.

[89] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with YCSB,” in Proceedings of the 1st ACM symposium on Cloud
computing, 2010, pp. 143–154.

[90] J. Yang, Y. Yue, and K. Rashmi, “A large scale analysis of hundreds of in-memory cache
clusters at Twitter,” in Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation, 2020, pp. 191–208.

154

https://public.tableau.com/app/discover
https://public.tableau.com/app/profile/james.jeffrey/viz/CitiBikeRideAnalyzer/CitiBikeRdeAnalyzer
https://public.tableau.com/app/profile/james.jeffrey/viz/CitiBikeRideAnalyzer/CitiBikeRdeAnalyzer


[91] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload analysis of
a large-scale key-value store,” in Proceedings of the 12th ACM SIGMETRICS/PERFOR-
MANCE joint international conference on Measurement and Modeling of Computer Sys-
tems, 2012, pp. 53–64.

[92] M. Hardt, K. Ligett, and F. Mcsherry, “A simple and practical algorithm for differentially
private data release,” in Advances in Neural Information Processing Systems, F. Pereira,
C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25, Curran Associates, Inc., 2012.

[93] S. Aydöre et al., “Differentially private query release through adaptive projection,” in Pro-
ceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, M. Meila and T. Zhang, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 139, PMLR, 2021, pp. 457–467.

[94] N. Beckmann, H. Chen, and A. Cidon, “Lhd: Improving cache hit rate by maximizing
hit density,” in Proceedings of the 15th USENIX Conference on Networked Systems De-
sign and Implementation, ser. NSDI’18, Renton, WA, USA: USENIX Association, 2018,
389âĂŞ403, ISBN: 9781931971430.

[95] J. Yang, Y. Yue, and K. V. Rashmi, “A large-scale analysis of hundreds of in-memory
key-value cache clusters at twitter,” ACM Trans. Storage, vol. 17, no. 3, 2021.

[96] H. Che, y. Tung, and Z. Wang, “Hierarchical web caching systems: Modeling, design
and experimental results,” Selected Areas in Communications, IEEE Journal on, vol. 20,
pp. 1305–1314, Oct. 2002.

[97] N. M. Johnson, J. P. Near, and D. Song, “Towards practical differential privacy for SQL
queries,” Proc. VLDB Endow., vol. 11, no. 5, pp. 526–539, 2018.

[98] E. Roth, H. Zhang, A. Haeberlen, and B. C. Pierce, “Orchard: Differentially private an-
alytics at scale,” in 14th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2020, Virtual Event, November 4-6, 2020, USENIX Association, 2020,
pp. 1065–1081.

[99] K. Amin, J. Gillenwater, M. Joseph, A. Kulesza, and S. Vassilvitskii, “Plume: Differential
Privacy at Scale,” arXiv, Jan. 2022. eprint: 2201.11603.

[100] I. Kotsogiannis et al., “Privatesql: A differentially private sql query engine,” Proc. VLDB
Endow., vol. 12, no. 11, 1371âĂŞ1384, 2019.

[101] M. Mazmudar, T. Humphries, J. Liu, M. Rafuse, and X. He, “Cache me if you can: Accuracy-
aware inference engine for differentially private data exploration,” Proc. VLDB Endow.,
vol. 16, no. 4, pp. 574–586, 2022.

155

2201.11603


[102] C. Li, G. Miklau, M. Hay, A. McGregor, and V. Rastogi, “The matrix mechanism: Opti-
mizing linear counting queries under differential privacy,” VLDB J., vol. 24, no. 6, pp. 757–
781, 2015.

[103] A. Blum, K. Ligett, and A. Roth, “A learning theory approach to non-interactive database
privacy,” in Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Vic-
toria, British Columbia, Canada, May 17-20, 2008, C. Dwork, Ed., ACM, 2008, pp. 609–
618.

[104] G. Vietri, G. Tian, M. Bun, T. Steinke, and Z. S. Wu, “New oracle-efficient algorithms
for private synthetic data release,” in Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, ser. Proceedings of
Machine Learning Research, vol. 119, PMLR, 2020, pp. 9765–9774.

[105] R. McKenna, G. Miklau, M. Hay, and A. Machanavajjhala, “Optimizing error of high-
dimensional statistical queries under differential privacy,” Proc. VLDB Endow., vol. 11,
no. 10, pp. 1206–1219, 2018.

[106] C. Li, M. Hay, G. Miklau, and Y. Wang, “A data- and workload-aware query answering
algorithm for range queries under differential privacy,” Proc. VLDB Endow., vol. 7, no. 5,
pp. 341–352, 2014.

[107] R. Cummings, S. Krehbiel, K. A. Lai, and U. Tantipongpipat, “Differential privacy for
growing databases,” CoRR, vol. abs/1803.06416, 2018. arXiv: 1803.06416.

[108] T.-H. Hubert Chan, E. Shi, and D. Song, “Private and continual release of statistics,” in
Automata, Languages and Programming, S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer
auf der Heide, and P. G. Spirakis, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 405–417, ISBN: 978-3-642-14162-1.

[109] A. R. Cardoso and R. Rogers, “Differentially private histograms under continual obser-
vation: Streaming selection into the unknown,” in International Conference on Artificial
Intelligence and Statistics, AISTATS 2022, 28-30 March 2022, Virtual Event, G. Camps-
Valls, F. J. R. Ruiz, and I. Valera, Eds., ser. Proceedings of Machine Learning Research,
vol. 151, PMLR, 2022, pp. 2397–2419.

[110] Intelligent tracking prevention 2.3, https://webkit.org/blog/9521/intelligent-
tracking-prevention-2-3/, 2019.

[111] Over a decade of anti-tracking work at mozilla, https://blog.mozilla.org/en/
privacy-security/mozilla-anti-tracking-milestones-timeline/,
2022.

[112] A. Chavez, A new path for privacy sandbox on the web, https://privacysandbox.
com/news/privacy-sandbox-update/, 2024.

156

https://arxiv.org/abs/1803.06416
https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/
https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/
https://blog.mozilla.org/en/privacy-security/mozilla-anti-tracking-milestones-timeline/
https://blog.mozilla.org/en/privacy-security/mozilla-anti-tracking-milestones-timeline/
https://privacysandbox.com/news/privacy-sandbox-update/
https://privacysandbox.com/news/privacy-sandbox-update/


[113] Icloud private relay overview, https : / / www . apple . com / icloud / docs /
iCloud_Private_Relay_Overview_Dec2021.pdf, 2021.

[114] Apple, Inc., Apple announces powerful new privacy and security features, https://
www.apple.com/newsroom/2023/06/apple-announces-powerful-
new-privacy-and-security-features/, 2023.

[115] G. P. Sandbox, Privacy Sandbox for the Web, https://privacysandbox.com/
intl/en_us/open-web, 2023.

[116] Privacy preserving ad click attribution for the web, https://webkit.org/blog/
8943/privacy-preserving-ad-click-attribution-for-the-web/,
2019.

[117] G. Chrome, Federated Learning of Cohorts (FLoC), https://privacysandbox.
com/proposals/floc/.

[118] Understanding appleâĂŹs private click measurement, https://blog.mozilla.
org/en/mozilla/understanding-apples-private-click-measurement/,
2022.

[119] GoogleâĂŹs floc is a terrible idea, https://www.eff.org/deeplinks/2021/
03/googles-floc-terrible-idea, 2021.

[120] G. Chrome, Protected Audience API overview, https://developers.google.
com/privacy-sandbox/relevance/protected-audience.

[121] Private advertising technology community group, https://www.w3.org/community/
patcg, 2024.

[122] Attribution reporting api (ara)), https://github.com/WICG/attribution-
reporting-api/blob/main/AGGREGATE.md, 2022.

[123] Interoperable private attribution (ipa)), https://github.com/patcg-individual-
drafts/ipa, 2022.

[124] Private ad measurement (pam), https://github.com/patcg-individual-
drafts/private-ad-measurement, 2023.

[125] Hybrid proposal, https : / / github . com / patcg - individual - drafts /
hybrid-proposal, 2024.

[126] H. Ebadi, D. Sands, and G. Schneider, “Differential Privacy: Now it’s Getting Personal,”
in Proceedings of the 42nd Annual ACM SIGPLAN SIGACT Symposium on Principles of

157

https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf 
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf 
https://www.apple.com/newsroom/2023/06/apple-announces-powerful-new-privacy-and-security-features/
https://www.apple.com/newsroom/2023/06/apple-announces-powerful-new-privacy-and-security-features/
https://www.apple.com/newsroom/2023/06/apple-announces-powerful-new-privacy-and-security-features/
https://privacysandbox.com/intl/en_us/open-web
https://privacysandbox.com/intl/en_us/open-web
https://webkit.org/blog/8943/privacy-preserving-ad-click-attribution-for-the-web/
https://webkit.org/blog/8943/privacy-preserving-ad-click-attribution-for-the-web/
https://privacysandbox.com/proposals/floc/
https://privacysandbox.com/proposals/floc/
https://blog.mozilla.org/en/mozilla/understanding-apples-private-click-measurement/
https://blog.mozilla.org/en/mozilla/understanding-apples-private-click-measurement/
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
https://developers.google.com/privacy-sandbox/relevance/protected-audience
https://developers.google.com/privacy-sandbox/relevance/protected-audience
https://www.w3.org/community/patcg
https://www.w3.org/community/patcg
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATE.md
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATE.md
https://github.com/patcg-individual-drafts/ipa
https://github.com/patcg-individual-drafts/ipa
https://github.com/patcg-individual-drafts/private-ad-measurement
https://github.com/patcg-individual-drafts/private-ad-measurement
https://github.com/patcg-individual-drafts/hybrid-proposal
https://github.com/patcg-individual-drafts/hybrid-proposal


Programming Languages, Mumbai India: ACM, Jan. 14, 2015, pp. 69–81, ISBN: 978-1-
4503-3300-9.

[127] D. Kifer, S. Messing, A. Roth, A. Thakurta, and D. Zhang, “Guidelines for implementing
and auditing differentially private systems,” Tech. Rep., 2020.

[128] Privacy-preserving attribution: Level 1, https://private-attribution.github.
io/api/, 2024.

[129] R. M. Rogers, A. Roth, J. Ullman, and S. Vadhan, “Privacy odometers and filters: Pay-as-
you-go composition,” in Advances in Neural Information Processing Systems, D. Lee, M.
Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29, Curran Associates, Inc.,
2016.

[130] Google, Attribution reporting api with aggregatable reports, https://github.com/
WICG/attribution-reporting-api/blob/main/AGGREGATE.md#contribution-
bounding-and-budgeting/, 2024.

[131] V. Feldman and T. Zrnic, “Individual privacy accounting via a rényi filter,” in Advances
in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.
Liang, and J. W. Vaughan, Eds., vol. 34, Curran Associates, Inc., 2021, pp. 28 080–28 091.

[132] D. Yu, G. Kamath, J. Kulkarni, T.-Y. Liu, J. Yin, and H. Zhang, “Individual Privacy Ac-
counting for Differentially Private Stochastic Gradient Descent,” Transactions on Machine
Learning Research, Apr. 27, 2023.

[133] B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, and C. Zhang, “Deep Learning with La-
bel Differential Privacy,” in Advances in Neural Information Processing Systems, vol. 34,
Curran Associates, Inc., 2021, pp. 27 131–27 145.

[134] Patcg attribution synthetic data, https://docs.google.com/document/d/
1Vxq4LrMe3A2WIlu-7IYP1Hycr_nz3_qTpPAICX9fLcw, 2024.

[135] M. Tallis and P. Yadav, “Reacting to variations in product demand: An application for
conversion rate (CR) prediction in sponsored search,” arXiv preprint arXiv:1806.08211,
2018.

[136] C. Dwork and A. Roth, “The Algorithmic Foundations of Differential Privacy,” Founda-
tions and Trends® in Theoretical Computer Science, vol. 9, no. 3-4, pp. 211–407, 2013.

[137] F. D. McSherry, “Privacy integrated queries: An extensible platform for privacy-preserving
data analysis,” in Proceedings of the 2009 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’09, New York, NY, USA: Association for Computing
Machinery, Jun. 29, 2009, pp. 19–30, ISBN: 978-1-60558-551-2.

158

https://private-attribution.github.io/api/
https://private-attribution.github.io/api/
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATE.md#contribution-bounding-and-budgeting/
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATE.md#contribution-bounding-and-budgeting/
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATE.md#contribution-bounding-and-budgeting/
https://docs.google.com/document/d/1Vxq4LrMe3A2WIlu-7IYP1Hycr_nz3_qTpPAICX9fLcw
https://docs.google.com/document/d/1Vxq4LrMe3A2WIlu-7IYP1Hycr_nz3_qTpPAICX9fLcw


[138] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith, “What can
we learn privately?” SIAM Journal on Computing, vol. 40, no. 3, pp. 793–826, 2011.

[139] E. Margolin, K. Newatia, T. Luo, E. Roth, and A. Haeberlen, “Arboretum: A planner for
large-scale federated analytics with differential privacy,” in Proceedings of the 29th Sym-
posium on Operating Systems Principles, ser. SOSP ’23, , Koblenz, Germany: Association
for Computing Machinery, 2023, 451âĂŞ465, ISBN: 9798400702297.

[140] A. Bittau et al., “Prochlo: Strong privacy for analytics in the crowd,” in Proceedings of
the 26th Symposium on Operating Systems Principles, ser. SOSP ’17, Shanghai, China:
Association for Computing Machinery, 2017, 441âĂŞ459, ISBN: 9781450350853.

[141] A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev, “Distributed differential pri-
vacy via shuffling,” in Advances in Cryptology – EUROCRYPT 2019, Y. Ishai and V. Rij-
men, Eds., Cham: Springer International Publishing, 2019, pp. 375–403, ISBN: 978-3-030-
17653-2.

[142] Introducing private click measurement, pcm, https://webkit.org/blog/11529/
introducing-private-click-measurement-pcm/, 2021.

[143] B. Case et al., Interoperable private attribution: A distributed attribution and aggregation
protocol, Cryptology ePrint Archive, Paper 2023/437, https://eprint.iacr.org/
2023/437, 2023.

[144] M. Dawson et al., Optimizing Hierarchical Queries for the Attribution Reporting API,
Comment: Appeared at AdKDD 2023 workshop; Final proceedings version, Nov. 27, 2023.
arXiv: 2308.13510 [cs].

[145] H. Aksu et al., Summary Reports Optimization in the Privacy Sandbox Attribution Report-
ing API, Nov. 22, 2023. arXiv: 2311.13586 [cs].

[146] J. Delaney et al., Differentially private ad conversion measurement, 2024. arXiv: 2403.
15224 [cs.CR].

[147] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent
objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3, 463âĂŞ492, 1990.

[148] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The notions of consistency and
predicate locks in a database system,” Commun. ACM, vol. 19, no. 11, 624âĂŞ633, 1976.

[149] B. W. Lampson and D. B. Lomet, “A new presumed commit optimization for two phase
commit,” in Proceedings of the 19th International Conference on Very Large Data Bases,
ser. VLDB ’93, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993, 630âĂŞ640,
ISBN: 155860152X.

159

https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
https://eprint.iacr.org/2023/437
https://eprint.iacr.org/2023/437
https://arxiv.org/abs/2308.13510
https://arxiv.org/abs/2311.13586
https://arxiv.org/abs/2403.15224
https://arxiv.org/abs/2403.15224


[150] R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker, “An evaluation of distributed
concurrency control,” Proc. VLDB Endow., vol. 10, no. 5, 553âĂŞ564, 2017.

[151] H. Lim, M. Kaminsky, and D. G. Andersen, “Cicada: Dependably fast multi-core in-
memory transactions,” in Proceedings of the 2017 ACM International Conference on Man-
agement of Data, ser. SIGMOD ’17, Chicago, Illinois, USA: Association for Computing
Machinery, 2017, 21âĂŞ35, ISBN: 9781450341974.

[152] E. Zamanian, J. Shun, C. Binnig, and T. Kraska, “Chiller: Contention-centric transaction
execution and data partitioning for modern networks,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, ser. SIGMOD ’20, Portland,
OR, USA: Association for Computing Machinery, 2020, 511âĂŞ526, ISBN: 9781450367356.

[153] T. Eldeeb and P. A. Bernstein, “Transactions for distributed actors in the cloud,” Tech. Rep.
MSR-TR-2016-1001, 2016.

[154] T. Eldeeb, S. Burckhardt, R. Bond, A. Cidon, J. Yang, and P. A. Bernstein, “Cloud actor-
oriented database transactions in orleans,” Proc. VLDB Endow., vol. 17, no. 12, pp. 3720–
3730, Aug. 2024.

[155] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a DHT,” in usenix,
2004.

[156] E. Soisalon-Soininen and T. Ylönen, “Partial strictness in two-phase locking,” in Proceed-
ings of the 5th International Conference on Database Theory, ser. ICDT ’95, Berlin, Hei-
delberg: Springer-Verlag, 1995, 139âĂŞ147, ISBN: 3540589074.

[157] G. Graefe, M. Lillibridge, H. Kuno, J. Tucek, and A. Veitch, “Controlled lock violation,”
in Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’13, New York, New York, USA: Association for Computing Machin-
ery, 2013, pp. 85–96, ISBN: 9781450320375.

[158] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “Aries: A transaction re-
covery method supporting fine-granularity locking and partial rollbacks using write-ahead
logging,” ACM Trans. Database Syst., vol. 17, no. 1, 94âĂŞ162, Mar. 1992.

[159] T. Eldeeb, X. Xie, P. A. Bernstein, A. Cidon, and J. Yang, “Chardonnay: Fast and general
datacenter transactions for On-Disk databases,” in 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), Boston, MA: USENIX Association, Jul.
2023, pp. 343–360, ISBN: 978-1-939133-34-2.

[160] G. Prasaad, A. Cheung, and D. Suciu, “Handling highly contended oltp workloads using
fast dynamic partitioning,” in Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data, ser. SIGMOD ’20, Portland, OR, USA: Association for
Computing Machinery, 2020, 527âĂŞ542, ISBN: 9781450367356.

160



[161] A. Pavlo et al., Benchbase: A benchmarking toolkit for database systems, https://
github.com/cmu-db/benchbase, GitHub repository, 2023.

[162] E. Soisalon-Soininen and T. Ylönen, “Partial strictness in two-phase locking,” in Proceed-
ings of the 5th International Conference on Database Theory, ser. ICDT ’95, Berlin, Hei-
delberg: Springer-Verlag, 1995, 139âĂŞ147, ISBN: 3540589074.

[163] H. Guo, X. Zhou, and L. Cai, “Lock violation for fault-tolerant distributed database sys-
tem,” in 2021 IEEE 37th International Conference on Data Engineering (ICDE), 2021,
pp. 1416–1427.

[164] P. K. Chrysanthis and K. Ramamritham, “Acta: A framework for specifying and reasoning
about transaction structure and behavior,” SIGMOD Rec., vol. 19, no. 2, 194âĂŞ203, 1990.

[165] P. Krishna Reddy and M. Kitsuregawa, “Speculative locking protocols to improve per-
formance for distributed database systems,” IEEE Transactions on Knowledge and Data
Engineering, vol. 16, no. 2, pp. 154–169, 2004.

[166] C. Diaconu et al., “Hekaton: Sql server’s memory-optimized oltp engine,” ser. SIGMOD
’13, New York, New York, USA: Association for Computing Machinery, 2013, 1243âĂŞ1254,
ISBN: 9781450320375.

[167] J. Lam, J. Helt, W. Lloyd, and H. Lu, “Accelerating skewed workloads with performance
multipliers in the TurboDB distributed database,” in 21st USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 24), Santa Clara, CA: USENIX Asso-
ciation, Apr. 2024, pp. 1213–1228, ISBN: 978-1-939133-39-7.

161

https://github.com/cmu-db/benchbase
https://github.com/cmu-db/benchbase

	Acknowledgments
	Introduction
	DPack: Efficiency-Oriented Privacy Budget Scheduling
	Overview
	Introduction
	Background
	Threat Model
	DP Background
	Privacy Scheduling Background

	Efficiency-Oriented Privacy Scheduling
	Efficient Scheduling with Traditional DP
	Efficient Scheduling Under RDP Accounting
	DPack Algorithm
	Adapting to the Online Case

	Applicability
	Implementation
	Evaluation
	Methodology
	Offline Microbenchmark (Q1, Q2)
	Online Plausible Workload (Q3)
	Kubernetes Implementation Evaluation (Q4)

	Related Work
	Conclusions

	Turbo: Effective Caching for Differentially-Private Databases
	Overview
	Introduction
	Background
	Turbo Overview
	Design Goals
	Use Cases
	Turbo Architecture

	Detailed Design
	Notation
	Running Example
	PMW-Bypass
	Tree-Structured PMW-Bypass
	Histogram Warm-Start

	Prototype Implementations
	Evaluation
	Methodology
	Use Case (1): Non-partitioned Database
	Use Case (2): Partitioned Static Database
	Use Case (3): Partitioned Streaming Database
	Runtime and Memory Evaluation

	Discussion
	Related Work
	Conclusion

	Cookie Monster: Efficient On-device Budgeting for Differentially-Private Ad-Measurement Systems
	Overview
	Introduction
	Review of Ad-Measurement APIs
	Example Scenario
	Ad-Measurement Systems
	Improvement Opportunity

	Cookie Monster Overview
	Architecture
	Execution Example
	Algorithm
	Bias Implications of IDP

	Formal Modeling and Analysis
	Formal System Model
	IDP Formulation and Guarantees
	IDP Optimizations

	Chrome Prototype
	Evaluation
	Methodology
	Microbenchmark Evaluation (Q1)
	PATCG Evaluation (Q1, Q2)
	Criteo Evaluation (Q1, Q2)
	Bias Measurement (Q3)

	Related Work
	Conclusion

	Dances with Locks: An Adaptive Commit Protocol for Distributed Transactions
	Overview
	Introduction
	Background
	Dependency Tracking with Resolver
	Sangria
	Overview
	Coordinator Commit Protocol
	Participant Prepare Procedure
	Discussion
	Adaptive Decision Logic
	Correctness Guarantees

	Evaluation
	Methodology
	Workloads
	Contention vs. Resolver Capacity (Q1)
	Online Adaptation (Q2)
	Mixed Workloads (Q3)
	Resolver Performance (Q4)

	Related Work
	Future Work
	Conclusions

	Conclusion
	References

