[Optimizing Privacy Budget Management in Differentially Private Systems]

[Kelly Kostopoulou]

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
under the Executive Committee
of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2025

© 2025
[Kelly Kostopoulou]

All Rights Reserved

Abstract
[Optimizing Privacy Budget Management in Differentially Private Systems]

[Kelly Kostopoulou]

Modern computing systems increasingly operate under stringent resource constraints—whether in
the form of traditional hardware resources like CPU and memory, or novel, non-traditional
resources such as user privacy. This thesis explores systems and algorithmic techniques for
efficient resource management in two distinct domains: (1) the emerging field of
privacy-preserving data analytics, where privacy itself becomes a scarce and quantifiable resource
to be allocated; and (2) distributed transaction processing, where lock-based contention and
commit coordination determine throughput under high load.

In the first part of the thesis, we present a series of systems—DPack, Turbo, and Cookie
Monster—that treat differential privacy budgets as consumable system resources. Each system
targets a different layer of the privacy-preserving computing stack, from workload schedulers to
database query caches to browser-based advertising measurement. Despite the diversity of
applications, they all aim to improve the efficiency with which private data can be used,
supporting more useful computation under fixed privacy guarantees.

The second part of the thesis shifts domains to distributed databases and introduces Sangria, an
adaptive protocol that dynamically switches between conservative and pipelined commit
strategies based on runtime conditions. Although this work is unrelated to privacy, it shares a

common methodological theme: maximizing efficiency under contention and resource pressure.

Together, these contributions illustrate the importance—and the diversity—of efficient resource
allocation across modern computing systems, from privacy-aware data processing to classical

transaction management.

Table of Contents

AcknowledgmentS . o v v v v v v it e xii
Chapter 1: Introduction . . . v v v v v v v v v v ot o e e v o oo oo oot oo oo noeos 1
Chapter 2: DPack: Efficiency-Oriented Privacy Budget Scheduling 3
2.1 OVEIVIEW e e e e 3
22 Introduction L e e 3

2.3 Background e 6
2.3.1 Threat Model 6

232 DPBackground 7

2.3.3 Privacy Scheduling Background 10

2.4 Efficiency-Oriented Privacy Scheduling 11
2.4.1 Efficient Scheduling with Traditional DP. 12

2.4.2 Efficient Scheduling Under RDP Accounting 15

243 DPack Algorithm L 19

244 Adaptingtothe OnlineCase 21

2.5 Applicability 22

2.6 Implementation e e 23

277 EBvaluation 24

27.1 Methodology 25

2.7.2 Offline Microbenchmark (Q1,Q2) 26

2.7.3 Online Plausible Workload (Q3) 28

2.7.4 Kubernetes Implementation Evaluation (Q4) 32

2.8 Related Work 34
2.9 Conclusions L 35
Chapter 3: Turbo: Effective Caching for Differentially-Private Databases 36
3.1 OVerVIEW o e e e 36
3.2 Introduction 36
3.3 Background e 40
34 Turbo Overview e e 42
34.1 DesignGoals 43

342 UseCases v v v v it e 44

3.4.3 Turbo Architectureo 45

3.5 Detailed Design 48
3.5.1 Notation oL e 48

3.5.2 Running Example oL L Lo 49

353 PMW-Bypass 51
3.54 Tree-Structured PMW-Bypass 57

3.5.5 Histogram Warm-Start oL Lo 59

3.6 Prototype Implementations 60
377 EBvaluation 65

i

3.77.1 Methodology 66

3.7.2 Use Case (1): Non-partitioned Database 69
3.7.3 Use Case (2): Partitioned Static Database 72
3.7.4 Use Case (3): Partitioned Streaming Database 73
3.7.5 Runtime and Memory Evaluation. 74
3.8 DISCUSSION e e e e 75
39 Related Work 77
3.10 Conclusion 79

Chapter 4: Cookie Monster: Efficient On-device Budgeting for Differentially-Private Ad-

4.1

4.2

4.3

4.4

4.5

Measurement SYSIEIMS « v v ¢ v v o o v o o v o o v v o o v o o b o o e e 80
OVervVIEW o e 80
Introduction L 80
Review of Ad-Measurement APIs 83
43.1 Example Scenario 83
4.3.2 Ad-Measurement Systems L.l 85
4.3.3 Improvement Opportunity 87
Cookie Monster Overview i 88
4.4.1 Architecture 89
442 BExecutionExample 91
443 Algorithm 92
444 Bias Implicationsof IDP L L o 94
Formal Modeling and Analysis 96
4.5.1 Formal SystemModel 96

1l

4.6

4.7

4.8

4.9

4.5.2 1IDP Formulation and Guarantees 100

453 IDP Optimizations v v v v i i e e e e e 103
Chrome Prototype e e 105
Evaluation L 105
477.1 Methodology e 105
47.2 Microbenchmark Evaluation (Q1) 107
4.7.3 PATCG Evaluation (Q1,Q2) 109
474 Criteo Evaluation (Q1,Q2) e 111
477.5 BiasMeasurement (Q3). e 113
Related Work o 114
Conclusion L 115

Chapter 5: Dances with Locks: An Adaptive Commit Protocol for Distributed Transactions 116

5.1

5.2

5.3

54

5.5

OVervVIEW o e 116
Introduction 117
Background 121
Dependency Tracking with Resolver 124
Sangria ... oL L e 127
551 Overviewo e 128
5.5.2 Coordinator Commit Protocol 129
5.5.3 Participant Prepare Procedure 129
554 Discussion. 130
5.5.5 Adaptive Decision Logic oL oL 131

v

5.5.6 Correctness GuUarant€eso i e i e e 131

5.6 Evaluation 132
5.6.1 Methodology 132

5.6.2 Workloads 133

5.6.3 Contention vs. Resolver Capacity (Q1) 134

5.6.4 Online Adaptation (Q2) 138

5.6.5 Mixed Workloads (Q3)o 140

5.6.6 Resolver Performance (Q4) 142

5.7 Related Work 144

5.8 Future Work L 146

5.9 Conclusions L e e 146
CONCIUSION + v v v vt e e e e e e e e e et e o e ottt o oo oo oo oo oo soeneees 147
References . « v v v v v i v i i i e e e e e e e e e e e e e e e e e 148

2.1

22

2.3

24

2.5

2.6

List of Figures

Example of allocations with basic DP accounting. Task 77 requests privacy budget from
3 blocks, By, By, B3. Tasks T, T3, T4 request slightly more privacy budget, but each one
from one distinct block: Bj, By, B3, respectively. In (a), DPF sorts these tasks based on
their dominant shares: T first (because its dominant share is lower, even though it demands
budget from all the blocks), then 7>, T3, T4 in arbitrary order. After 77 is scheduled, there
is no more budget for other tasks. Meanwhile, in (b) an efficient scheduler can allocate 3
tasKS. . . e e e e e e e e e e e e e e e

Example RDP curves and DP translation. (a) RDP curves for Gaussian, subsampled
Gaussian, and Laplace mechanisms, each with std-dev o = 2, plus their composition. (b)
Translation to (epp, 107%)-DP. The “best” (i.e., tightest) alpha differs among mechanisms.
For composition, bestis @ = 6, giving epp =5.5.o

Example of allocations with RDP accounting.

(Q1) DPack under workloads with variable heterogeneity using our microbenchmark.
Global efficiency of the algorithms (y axes) in the offline setting, as heterogeneity increases
on the x axes: (a) variation in number of blocks requested, (b) variation in best alphas for
the tasks” RDP curves. QI Answer: DPack tracks Optimal closely and significantly out-
performs DPF on workloads with high heterogeneity: 0—161% improvement for Fig. 2.4a
and 0-67% for Fig. 2.4b. e e e e e e e e e e e

(Q2) Scalability under increasing load from the microbenchmark. (a) Scheduler run-
time and (b) number of allocated tasks, as a function of offered load (x axes). Q2 Answer:
Optimal becomes intractable quickly while DPack and DPF remain practical even at high
load. e e e e e e e e e e e

(Q3) Efficiency evaluation on the online Alibaba-DP workload. Number of allocated
tasks as a function of (a) offered load for 90 blocks and (b) available blocks for 60k tasks.
03 Answer: Alibaba-DP exhibits sufficient heterogeneity for DPack to present a significant
improvement (1.3—1.7X) over DPF. v i i vt i e

vi

2.7

2.8

3.1

32

33

34

3.5

3.6

3.7

3.8

3.9

3.10

Evaluation on Amazon Reviews workload from [8]. (a) The original synthetic workload
exhibits limited heterogeneity, so there is no room for DPack to improve over DPF. (b)
Adding randomly selected weights to the tasks creates sufficient heterogeneity for DPack
to show an improvement. Global efficiency is measured as the sum of weights of allocated
tasks (y axiS). e e e e e e e e e e

(Q4) Evaluation on Kubernetes with Alibaba-DP. DPack has only a modestly higher
runtime than DPF, as system-related overheads dominate. In the online setting, scheduling
delays are nearly identical across schedulers.

Turbo architecture. e

Running example. (a) Simplified Covid tests dataset with n = 100 rows and data
domain size N = 8 for the two non-time attributes, test outcome P and subject’s
age bracket A. (b) Two queries that were previously run. (c) State of the histogram
as queries are executed. (d) Nextquerytorun.

Demo experiment.
PMW-Bypass. New components over vanilla PMW are in blue/bold.
Example of tree-structured histograms.
Tree-structured PMW-Bypass.
(a) Turbo integration into Tumult. (b) Tarbo APL.

Non-partitioned database: (a-c) system-wide evaluation (Question 1); (d) em-
pirical convergence for PMW-Bypass vs. PMW (Question 2). (a-c) Turbo, in-
stantiated with one PMW-Bypass and Exact-Cache, significantly improves budget
consumption compared to both baselines. (d) Uses Covid kjpr = 1. PMW-Bypass
has similar empirical convergence to PMW, and both converge faster with much
larger [r than anticipated by worst-case convergence.

Impact of parameters (Question 3). Uses Covid ki, = 1. Being too optimistic
or pessimistic about the histogram’s state (a), or too aggressive or timid in learning
from each update (b), gives poor performance.

Partitioned static database: system-wide evaluation (Question 5). Turbo is in-
stantiated with tree-structured PMW-Bypass and Exact-Cache. Turbo significantly
improves budget consumption compared to both a single Exact-Cache and a tree-
structured set of Exact-Caches. 0oL

Vil

3.11 (a-c) Partitioned streaming database: system-wide consumed budget (Ques-

4.1

4.2

4.3

4.4

4.5

4.6

4.7

tion 7); (d) PMW-Bypass runtime in non-partitioned setting (Question 8). (a-
c¢) Turbo is instantiated with tree-structured PMW-Bypass and Exact-Cache, with
and without warm-start. (d) Uses Covid, k,;pf = 1, and one Exact-Cache and PMW-
Bypass. Shows execution runtime for different execution paths. Most expensive is
whenthe SVtestfails.

Privacy loss dashboard. Screenshot from our Chrome implementation of Cookie
Monster (minimally edited for visibility). oo,

Architectures of ad-measurement systems. Common structure, with a key differ-
ence in where attribution and DP budgeting occur: off-device (IPA) vs. on-device
(ARA,PAM, Hybrid).

Cookie Monster architecture and example execution (red overlay). §4.4.1 de-
scribes the architecture and §4.4.2 the example execution. Notation: @e; : [
indicates that Ann’s device receives an impression /1 of a Nike shoe ad from ny-
times.com in epoch e;. Red dotted arrows show the attribution function’s search
for impressions overepochs ey —eq.o Lo

Budget consumption on the microbenchmark. (a) and (b) show average and
maximum budget consumption across all device-epochs, respectively, as a func-
tion of the fraction of users that participate per query (knobl); value of knob2 is
constant 0.1. (c) and (d) show the same metrics as a function of user impressions
per day (knob2); value of knobl is constant 0.1.

Budget consumption and query accuracy on the PATCG dataset. (a) Aver-
age budget consumption across all device-epochs as a function of the number of
queries submitted by the advertiser. (b) CDF of RMSRE with a 7-day epoch. (c)
RMSRE median (horizontal lines), first and third quartiles (boxes), and max/min
(top/bottom range markers) as epoch length increases.

Budget consumption and query accuracy on Criteo. (a) CDF of per-device
average budget consumption across epochs for all devices and advertisers. (b) CDF
of RMSREs for a 7-day epoch. (c) RMSRE metrics with varying epoch length (see
Fig. 4.5¢ for format). (d) The same CDF as in (a), but for Criteo++, showing the
impact of synthetic impression augmentation on Cookie Monster’s performance.

Budget consumption and query accuracy with bias measurement on the mi-
crobenchmark. (a) Average budget consumed across all device-epochs. (b) CDF
of true RMSRE for executed queries, alongside Cookie Monster’s RMSRE esti-
mation from bias measurement (light-purple line). (c) Quartiles of true RMSRE,
where queries with error estimate above a given cutoff are rejected by Cookie Mon-
ster with bias measurement. Lo Lo e

89

108

111

5.1

5.2

53

54

5.5

5.6

5.7

5.8

Heatmap illustrating the regimes where each protocol is most effective as a function
of workload contention (vertical axis) and Resolver capacity (horizontal axis). Red
regions indicate scenarios where pipelining (Pipelined-2PC) outperforms Strict-
2PC, while blue regions indicate the opposite. The color intensity reflects the mag-
nitude of the performance advantage. 118

Strict 2PC vs Pipelined 2PC. (a) In Strict 2PC, locks are held throughout the entire
commit protocol, resulting in long lock hold times and increased contention. (b) In
Pipelined 2PC, locks are released earlier — immediately after the prepare record
is appended to the WAL buffer — allowing subsequent transactions to proceed
sooner and reducing contention, but introducing commit-time dependencies that
require additional coordination to ensure correctness. 122

Resolver architecture showing communication between resolver, coordinator, and
PartiCipants e e e e e e e e 125

(Q1) Throughput of the three protocols as a function of workload contention (x-
axis: concurrency level) under three different Resolver capacity settings (a) high
capacity (no background load), (b) medium capacity (moderate background load),
and (c) low capacity (heavy background load). Sangria is able to adapt its behavior
based on the Resolver’s capacity and workload contention, matching or exceeding
the throughput of the baselines in all regimes. 134

(Q1) YCSB: Throughput comparison as contention increases (by increasing the
Zipf Constant) under varying Resolver capacities. 137

(Q2) Throughput of each protocol as workload contention alternates between low
and high phases at runtime, under three different resolver capacities (high, medium,
low). Sangria adapts to changing contention, matching or exceeding the best static
baselineineachregime. 139

(Q2) Throughput of each protocol as resolver capacity alternates between high
and low phases at runtime, under three different concurrency levels (5, 50, 500).
Sangria adapts to changing resolver capacity, matching or exceeding the best static
baselineineachregime. 140

(Q3) Throughput of each protocol under a mixed workload with both high-contention
(hot) and low-contention (cold) key regions, across three resolver capacities (high,
medium, low). Sangria dynamically applies pipelining for hot keys and strict com-

mit for cold keys, matching or exceeding the best baseline in each region. 141

1X

5.9 (Q4) Cumulative distribution function (CDF) of batch sizes for commit groups
formed by the Resolver. (a) Varying Resolver capacity under high contention (con-
currency = 500) shows that lower capacity leads to larger batch sizes due to more
transactions accumulating before being unblocked. (b) Varying workload con-
tention under maximum Resolver capacity demonstrates that higher concurrency
increases batching opportunities, while low contention results in mostly single-
transaction COMMILS. v v v vt et e e e

List of Tables

2.1 Workload and methodology of each evaluation question. 24

2.2 Efficiency on Kubernetes prototype with Alibaba-DP. 32

X1

Acknowledgments

Xii

Acknowledgements

I gratefully acknowledge the support of the Onassis Foundation, from which I have been a
recipient of a scholarship during my doctoral studies. The part of this dissertation related to

differential privacy was conducted in close collaboration with my co-first author, Pierre Tholoniat.

Xiil

Chapter 1: Introduction

Efficiency is a fundamental goal in systems design. As computing environments evolve, the
need to make effective use of limited resources remains constant. Traditionally, these resources
have included compute, memory, storage, and bandwidth. More recently, new forms of constraints
have emerged, such as user privacy, which must be carefully managed in systems that handle
sensitive data.

This thesis investigates efficient resource management across two distinct domains:

(a) Differentially-private computing, where privacy loss is modeled as a bounded budget that must
be allocated carefully; and (b) Distributed transaction processing, where system throughput de-
pends on how effectively a system handles contention and commit coordination under concurrent
access.

The bulk of the thesis focuses on the privacy domain. As organizations seek to extract insights
from sensitive datasets, differential privacy (DP) has become the gold standard for protecting in-
dividuals against leakage. However, DP comes with a hard constraint: once a dataset’s privacy
budget is exhausted, no further queries can be answered safely. We develop three systems that
address this constraint from different angles:

DPack proposes an efficiency-oriented scheduler that maximizes the number of machine learn-
ing models trained under a fixed privacy budget, formulating the problem as a multidimensional
knapsack variant.

Turbo introduces a caching mechanism for DP databases that leverages previous query results—
via both traditional caching and private multiplicative weights—to answer new queries with little
or no additional privacy cost.

Cookie Monster designs a rigorous on-device budgeting scheme for DP-based ad measurement

systems, improving both privacy guarantees and utility in modern browsers.

Although varied in implementation, these systems all treat privacy as a scarce system resource,
and focus on using it as efficiently as possible.

In contrast, the final chapter of the thesis shifts focus to a very different problem: optimizing
distributed commit protocols in transactional systems. While not thematically tied to privacy, this
work shares a conceptual alignment with the rest of the thesis. Here, contention for locks and coor-
dination bottlenecks limit system performance. We present Sangria, a distributed commit protocol
that dynamically toggles between conservative and pipelined execution strategies based on local
contention and resource availability, thereby improving transaction throughput across workload
regimes.

Together, the contributions in this thesis underscore a broader theme: how to allocate limited
resources—whether privacy budgets or coordination capacity—efficiently and accurately. The sys-

tems and algorithms presented here offer new insights into managing modern computing resources.

Chapter 2: DPack: Efficiency-Oriented Privacy Budget Scheduling

2.1 Overview

Machine learning (ML) models can leak information about users, and differential privacy (DP)
provides a rigorous way to bound that leakage under a given budget. This DP budget can be
regarded as a new type of computing resource in workloads of multiple ML. models training on
user data. Once it is used, the DP budget is forever consumed. Therefore, it is crucial to allocate
it most efficiently to train as many models as possible. This paper presents a scheduler for the
privacy resources that optimizes for efficiency. We formulate privacy scheduling as a new type
of multidimensional knapsack problem, called privacy knapsack, which maximizes DP budget
efficiency. We show that privacy knapsack is NP-hard, hence practical algorithms are necessarily
approximate. We develop an approximation algorithm for privacy knapsack, DPack, and evaluate it
on microbenchmarks and on a new, synthetic private-ML workload we developed from the Alibaba
ML cluster trace. We show that DPack: (1) often approaches the efficiency-optimal schedule, (2)
consistently schedules more tasks compared to a state-of-the-art privacy scheduling algorithm that
focused on fairness instead of efficiency (1.3—1.7X in Alibaba, 1.0-2.6X in microbenchmarks), but
(3) sacrifices some level of fairness for efficiency. Using DPack, DP ML operators should be able
to train more models on the same amount of user data while offering the same privacy guarantee

to their users.

2.2 Introduction

Machine learning (ML) models are consuming an essential resource — user privacy — but they
are typically not accounting for or bounding this consumption. A large company may train thou-

sands of models over user data per week, continuously updating its models as it collects new data.

Some of the models may be released to mobile devices or distributed globally to speed up infer-
ence. Unfortunately, there is increasing evidence that ML models can reveal specific entries from
their original training sets [1, 2, 3, 4, 5], both through parameters and predictions, thereby poten-
tially leaking user data to adversaries. Intuitively, the more one learns from aggregate user data,
the more one should expect to also learn (and hence leak) about individual users whose data is
used. This intuition has been proven formally for simple statistics [6] and repeatedly demonstrated
experimentally for ML models [2, 3, 5]. Therefore, user privacy can be viewed as a resource that
is consumed by tasks in an ML workload, and whose consumption should be accounted for and
bounded to limit data leakage risk.

Differential privacy (DP) [7] provides a rigorous way to define the privacy resource, and to
account for it across multiple computations or tasks, be they ML model training tasks or statistic
calculations. DP randomizes a computation over a dataset (e.g. training an ML model or computing
a statistic) to bound the leakage of entries in the dataset through the output of the computation [8].
Each DP computation increases this bound on data leakage, consuming some of the data’s privacy
budget, a pre-set quantity that should never be exceeded to maintain the privacy guarantee. In
workloads with a large number of tasks that continuously train models on a private corpus or
stream, the data’s privacy budget is a very scarce resource that must be efficiently allocated to
enable the execution of as many tasks as possible.

In our prior work [8, 9], we began exploring how to expose data privacy as a new computing
resource that is inherently being consumed by the tasks in an ML cluster and which must therefore
be allocated and managed by the cluster’s resource manager similarly to how other, more tradi-
tional computing resources — CPU, GPU, and RAM - are managed. Other researchers proposed
Cohere [10] an alternative approach for treating privacy as a computing resource. A common
conclusion of these prior works is that because the privacy resource behaves differently from tra-
ditional computing resources (e.g. it is finite), scheduling it requires new algorithms. To this end,
we proposed DPF [8], the first scheduling algorithm for the privacy resource, which adapted the

well-known dominant resource fairness (DRF) algorithm to the privacy resource. Our focus was on

fairness as the key objective for our algorithm design. DPF guarantees a form of max-min fairness
for the privacy budget when multiple tasks compete for it.

Unfortunately, as is often the case in scheduling [11, 12, 13, 14, 15, 16], fairness can come at
the cost of allocation efficiency, measured as the total number of tasks that are allocated over a unit
of time. For privacy, we find that this inefficiency is especially evident in workloads that exhibit a
high degree of heterogeneity either in the data segments they request (e.g., a workload containing
tasks that run on data collected from different time ranges), or in the types of tasks they contain
(e.g. a workload mixing different types of statistics and ML algorithms). In such cases, we show
that a scheduler that optimizes for efficiency rather than fairness can schedule up to 2.6X more
tasks than DPF for the same privacy budget.

In this paper, we explore the first practical efficiency-oriented privacy schedulers, which aim to
maximize the number of scheduled tasks, or the total utility of scheduled tasks if tasks are assigned
utility weights (§2.4). We first introduce a new formulation of the DP scheduling problem, which
optimizes for efficiency, and show that it maps to the NP-hard multidimensional knapsack problem,
requiring practical approximations to solve in practice. We demonstrate that (1) our prior DPF
algorithm, which optimizes for fairness, can be seen as an inefficient heuristic to solve this problem,
and that (2) a better heuristic for multidimensional knapsack yields more efficient DP scheduling.
We then show that instantiating the privacy scheduling problem to Rényi DP (RDP) accounting,
a state-of-the-art, efficient DP accounting mechanism, introduces a new dimension with unusual
semantics to the scheduling problem. To support this new dimension, we define a new knapsack
problem that we call the privacy knapsack, which we show is also NP-hard. Finally, we propose a
new RDP-aware heuristic for the privacy knapsack, instantiate it into a new scheduling algorithm
called DPack, provide a formal analysis of its approximation properties, and discuss when one
should expect to see significant efficiency gains from it (§2.5).

We implement DPack in a Kubernetes-based orchestrator for data privacy [8] and an easily-
configurable simulator (§3.6). Using both microbenchmarks and a new, synthetic, DP-ML work-

load we developed from the Alibaba’s ML cluster trace [17], we compare DPack to DPF, the

optimal privacy knapsack solver, and first-come-first-serve (FCFS) (§5.6). DPack schedules signif-
icantly more tasks than DPF (1.3—1.7x in Alibaba and 1.0-2.6x in microbenchmarks), and closely
tracks the optimal solution, at least up to a small number of blocks and tasks where it is feasible for
us to obtain the optimal solution. DPack on Kubernetes can scale to thousands of tasks, and incurs
a relatively modest scheduler runtime overhead. Still, by focusing on efficiency, DPack sacrifices
some level of fairness compared to DPF: in the Alibaba workload, DPF is able to schedule 90%
of tasks that request less or equal than their privacy budget “fair-share”, while DPack schedules
only 60% of such tasks. This is inevitable given the rather fundamental tradeoff between efficiency
and fairness in scheduling. Our work thus fills in an important gap on algorithms that prioritize
efficiency over fairness, as we believe will be desirable given the scarcity of this essential new
resource in ML systems, user privacy.

This paper is organized as follows. §5.3 provides background on the threat model we are
addressing, DP, and prior work on DP scheduling. Much of this section builds upon our prior
papers in this space [8, 9], so there is considerable redundancy in the statements with those papers’,
which we include for the purposes of making this paper self-contained. §2.4 begins our main
contributions in this work, consisting of the definitions and hardness properties of the efficiency-
oriented DP scheduling problem, its adaptation for RDP, and the DPack algorithm we propose
for both efficient and practical DP resource scheduling. §2.5 describes the applicability of our
approach, highlighting cases when DPack is likely to give substantial efficiency benefit compared
to DPF, as well as cases when it will not do so. §3.6 presents our implementation of DPack, while
§5.6 provides our evaluation. Finally, §4.8 reviews related works and §4.9 concludes. We make our

prototype and experimental code available at https://github.com/columbia/dpack.

2.3 Background

2.3.1 Threat Model

We adopt the same threat model as in our prior work [8]. We are concerned with the sensitive

data exposure that may occur when pushing models trained over user data to untrusted locations,

6

https://github.com/columbia/dpack

such as end-user devices or inference servers all around the world. We operate under a centralized-
DP model: a trusted curator collects and stores all user data and executes tasks, which consist of
ML training procedures or pipelines that are explicitly programmed to satisfy a particular (e, §)-
DP guarantee. We trust that the curator and the programmers of the tasks are not malicious and
will not want to inspect, steal, or sniff the data. However, we do not trust the recipients of results
released by the system, or the locations in which they are stored. Those results may be statistical
aggregates, ML model predictions, or entire ML models. Accessing them may allow malicious
activities that compromise sensitive personal information. We impose DP guarantees across all the
processes that generate them. Membership inference attacks [18, 19, 20, 3] allow the adversary to
infer whether an individual is in the data used to generate the output. Data reconstruction attacks
[2, 6, 1] allow the adversary to infer sensitive attributes about individuals that exist in this data. We
tackle both types of attack.

Our focus is not on single models or statistics, released once, but rather on workloads of many
models or statistics, trained or updated periodically over windows of data from user streams. For
example, a company may train an auto-complete model daily or weekly to incorporate new data
from an email stream, distributing the updated models to mobile devices for fast prediction. More-
over, the company may use the same email stream to periodically train and disseminate multiple
types of models, for example for recommendations, spam detection, and ad targeting. This creates
ample opportunities for an adversary to collect models and perform privacy attacks to siphon per-
sonal data. To prevent such attacks, our goal is to maintain a global (€¢, 6%)-DP guarantee over

the entire workload consisting of many tasks.

2.3.2 DP Background

We present background on DP theory that is necessary to understand our scheduling algorithm.
DP addresses both membership inference and data reconstruction attacks [3, 1, 2, 21]. Intuitively,
both attacks work by finding data points (which can range from individual events to entire users)

that make the observed model more likely: if those points were in the training set, the likelihood

of the observed model increases. DP prevents these attacks by ensuring that no specific data point
can drastically increase the likelihood of the model produced by the training procedure.

DP randomizes a computation over a dataset (such as the training of ML model) to bound a
quantity called privacy loss, defined as some measure of the change in the distribution over the
outputs of the randomized computation incurred when a single data point is added to or removed
from the input dataset. Privacy loss is a formalization of what one might colloquially call “leakage”
through a model. Satisfying DP means bounding privacy loss by some fixed, parameterized value,
€ > 0, which is called privacy budget. This bound is enforced through the virtue of the randomness
(often called noise) added into the computation. There are multiple ways to define privacy loss,
corresponding to various ways to define the distance between two output distributions. These
different privacy loss definitions lead to different DP definitions, each with different interpretations,
strengths and weaknesses. We review two DP definitions here.

Traditional differential privacy (e-DP and (€, 6)-DP). The original definition proposed by Dwork,
et al. [7] defines privacy loss as follows. Given a randomized algorithm, A : D — Y, for any

datasets D, D’ that differ in one entry (called neighboring datasets) and for any output y € V:

PAD) =) on

PrivacyLoss(y, D, D) = log (P(&ZI(Z)’) —)

The traditional, pure e-DP definition requires an algorithm to satisfy |PrivacyLoss(y, D, D’)| < €
for any y, D, D’ as above. A variation of this definition, popularly used in ML, is (¢, §)-DP: for
0 € [0, 1), it requires an algorithm to satisfy =P(A(D) € S) < exp(e)P(A(D’) € S) + § for all
S <€ Range(A), for each neighboring D, D’.

These traditional DP definitions have the strength of being relatively interpretable: for a small
value of € (e.g., € < 1), e-DP can be interpreted as a guarantee that an attacker who inspects the
output of an e-DP computation will not learn anything new with confidence about any entry in the
training set that they would not otherwise learn if the entry were not in the training set [22]. Simi-
larly, for small ¢ (e.g., d < % for dataset size n), (€, §)-DP guarantee is roughly a high-probability

€-DP guarantee. The advantage of (€, §)-DP is support for a richer set of randomization mecha-

nisms, such as adding noise from a Gaussian distribution, which pure DP cannot, and which often
provide better privacy-utility tradeoffs. That is why (e, §)-DP is the reference privacy definition
for DP ML.

Rényi DP Accounting ((a, €)-RDP). More recent DP definitions define privacy loss differently,
usually sacrificing interpretability for tighter analysis of randomization mechanisms and how they
compose with each other, yielding even better privacy-utility tradeoffs, especially in DP ML. A
state-of-the-art definition is RDP [23], which has been adopted internally by most DP ML plat-
forms [24, 25, 26]. Instead of defining the privacy loss based on probability ratios as traditional
DP does, RDP defines it in terms of the Rényi divergence, a particular distance between the dis-
tributions over all possible outcomes for A(D) and A(D’). Rényi divergence has a parameter,

a > 1, called order:

. , 1 P(A(D) =)\
PrivacyLoss, (D, D) = o1 lOgy~y((z))(P(ﬂ(D’) =))]’)) .

As before, («, €)-RDP requires that |PrivacyLoss, (D, D’)| < € for any datasets D, D’ differing
in one entry.

RDP is less interpretable than traditional DP due to the complexity of Rényi divergence. How-
ever, one can always translate from (¢, @)-RDP to (epp, §)-DP [23] for any appropriately ranged
values of a, €, and ¢:

log(1/6)

€Epp=€+ —m . 2.2)
a-1

RDP’s greatest advantage over traditional DP — and the reason for its recent adoption by most
major DP ML platforms as well as for our special consideration of it in this paper — is its support
for both efficient and convenient composition. All successful DP definitions are closed under com-
position; i.e., running multiple DP computations satisfies the DP definition, albeit with a worse €
parameter. However, whereas with traditional DP, composing m mechanisms degrades the global
guarantee linearly with m, with RDP, the global guarantee degrades with v/m when applying com-

position followed by conversion to traditional DP through Eq. 2.2. RDP’s tighter analysis can allow

composition of more DP computations with the same € guarantees; the advantage is particularly
significant with a large m.

Since popular DP ML algorithms, such as DP SGD, consist of tens of thousands iterations of
the same rudimentary DP computation (computing one gradient step over a sample batch), they
require the most efficient composition accounting method. This is why most DP ML platforms
internally operate on RDP to compose across training steps and then translate the cumulative RDP
guarantee into traditional DP (with Eq. 2.2) to provide an interpretable privacy semantic externally.
Similarly, since our goal is to develop efficient scheduling algorithms — that pack as many DP ML
tasks as possible onto a fixed privacy budget — it is incumbent on us to consider RDP accounting

in our scheduling formulations.!

We do so in a similar way: internally, some of the algorithms
we propose use RDP accounting (albeit to compose across ML training tasks, not across gradient
steps within a task) but externally we will always expose a traditional DP guarantee. As it turns

out, operating on RDP internally creates interesting challenges for scheduling, about which we

discuss in §2.4.2.

2.3.3 Privacy Scheduling Background

In a recent line of work [9, 8], we have argued for the global privacy budget to be managed as a
new type of computing resource in workloads operating on user data: its use should be tracked and
carefully allocated to competing tasks. We adopt the same focus on ML platforms for continuous
training on user data streams, such as Tensorflow-Extended (TFX), and build on the same basic
operational model [9] and key abstractions and algorithms [8] for monitoring and allocating privacy
in DP versions of these platforms. The operational model is as follows. Similar to TFX, the user
data stream is split into multiple non-overlapping blocks (called spans in TFX [28]), for example
by time, with new blocks being added over time. Blocks can also correspond to partitions given
by SQL GROUP BY statements over public keys, such as in Google’s DP SQL system [29] or in

the DP library used for the U.S. Census [30]. There are multiple tasks, dynamically arriving over

'We considered, and discarded, advanced composition for traditional DP, which is also efficient but involves com-
plex arithmetic that is untenable to incorporate in a scheduler [27].

10

time, that request to compute (e.g., train ML models) on subsets of the blocks, such as the most
recent N blocks. The company owning the data wants to enforce a global traditional DP guarantee,
(eY,69)-DP, that cannot be exceeded across these tasks. Each data block is associated with a
global privacy budget (fixed a priori), which is consumed as DP tasks compute on that block until
it is depleted.

In Luo et al. [8], we incorporated privacy blocks, 1.e., data blocks with privacy budget, as
a new compute resource into Kubernetes, to allocate privacy budget from these blocks to tasks
that request them. The resulting system, which is a drop-in extension of Kubernetes, is called
PrivateKube. To request privacy budget from a privacy block, a task i sets a demand vector (d;) of
length m, equal to the number of blocks in the system. The demand vector specifies the privacy
budget that task 7 requests for each individual block in the system (with a zero demand for blocks
that it is not requesting). If task 7 is allocated, then its demand vector is consumed from the blocks’
privacy budgets. When a block’s privacy budget reaches zero, no more tasks can be allocated for
that block and the block is removed. This ensures that a block of user data will not be used to
extract so much information that it risks leaking information about the users. In this sense, each
privacy block is a non-replenishable or finite resource. It is therefore important to carefully allocate
budget from privacy blocks across tasks, so as to pack as many tasks as possible onto the blocks
available at any time. That’s the goal of efficiency-oriented privacy scheduling and it is in contrast
(and as we shall see, at odds) with fairness-oriented scheduling, which we previously explored
in PrivateKube with an algorithm called DPF (Dominating Privacy-block Fairness). We defer a
description of DPF and the tradeoffs between fairness and efficiency in privacy scheduling until

after we have formulated the efficiency-oriented privacy scheduling problem in what follows.

2.4 Efficiency-Oriented Privacy Scheduling

A key contribution of this work is the formalization of the efficiency-oriented DP scheduling
problem. We first develop an offfine version of this problem, in which the entire workload is as-

sumed to be fixed and known a priori, and study efficient DP scheduling under traditional DP and

11

basic composition (§2.4.1). We show that offline DP scheduling maps to the NP-hard multidi-
mensional knapsack problem, requiring practical approximations to solve in practice. Describing
how our previous DPF algorithm works, we show that it can be seen as an inefficient heuristic for
the efficiency-oriented scheduling problem, albeit one that has fairness guarantees. We then show
that a better heuristic yields more efficient DP scheduling with multiple data blocks. In §2.4.2 we
move onto a more complex RDP formulation of the efficiency-oriented allocation problem, but one
that has the potential to boost efficiency significantly compared to traditional DP thanks to RDP’s
composition benefits. We prove the new RDP formulation as also NP-hard and develop a second,
RDP-aware heuristic that leverages some unusual characteristics of this problem. In §2.4.3, we
describe DPack, our proposed efficiency-oriented scheduling algorithm that incorporates both of
our heuristics and in special settings can be shown to be a proper approximation of the efficiency-
optimal solution to the RDP privacy knapsack problem. Finally, in §2.4.4 we adapt DPack to the

online case.

2.4.1 Efficient Scheduling with Traditional DP

We define the global efficiency of a scheduling algorithm as either the number of scheduled
tasks or, more generally, the sum of weights w; of scheduled tasks, for cases when different tasks
have different utilities (a.k.a. profits or weights) to the organization. When the goal is to optimize
global efficiency, we can model privacy budget scheduling in a multi-block system such as TFX
as a multidimensional knapsack problem. First, recall that traditional DP composes, in its simplest
form, using an additive arithmetic: the composition of two (€1, d1)-DP and (e, 67)-DP tasks is
(€1 + €,01 + 82)-DP. In this paper we assume ¢ is extremely small (as it should always be, since
it is a failure probability of the pure DP guarantee), hence we ignore the additive effects on the ¢
parameters and instead focus on the additive effects of the e parameters, which are typically many
orders of magnitude larger than the 6 parameters.

Knapsack problem formulation. Consider a fixed number of n tasks (¢, ..., 1,) that need to be

scheduled over m blocks, each with ¢; remaining capacity. Each task has a demand vector d;;,

12

Budget Budget

A A
1 1
Task T,
2/3 2/3 Task T,
Task T,
1/3 1/3 Task T,
OB B B Elocks 0 g B B Elocks
1 2 3 1 2 3
(a) Inefficient allocation with DPF (b) Efficient allocation

Fig. 2.1: Example of allocations with basic DP accounting. Task 7 requests privacy budget from 3
blocks, B, By, B3. Tasks T3, T3, T, request slightly more privacy budget, but each one from one distinct
block: By, B», B3, respectively. In (a), DPF sorts these tasks based on their dominant shares: 7 first (because
its dominant share is lower, even though it demands budget from all the blocks), then 73, T3, T4 in arbitrary
order. After T is scheduled, there is no more budget for other tasks. Meanwhile, in (b) an efficient scheduler
can allocate 3 tasks.

which represents the e demand by task i for block j, and a weight w; if it is successfully scheduled
(when w; is equal across all tasks, the problem is to maximize the number of scheduled tasks). We
can formulate this problem as the standard multidimensional knapsack problem [31], where x; are
binary variables:
n n
x,»ren{a(l)?(l} ; wix; subjectto Vj € [m] : ; dijx; < cj. (2.3)
W.l.o.g., we assume there is not enough budget to schedule all tasks: Vj € [m] : 2.7, d;j > c;.
Otherwise, the knapsack problem is trivial to solve. If some blocks have enough budget but not
others, we can set the blocks with enough budget aside, solve the problem only on the blocks with
contention, and incorporate the remaining blocks at the end.
The need for heuristics. The multidimensional knapsack problem is known to be NP-hard [31],
so DP scheduling cannot be solved exactly, even in the offline case. There exist some general-
purpose polynomial approximations for this problem, but they are exponential in the approximation
parameter and become prohibitive for large numbers of dimensions (for us, many blocks). In

§2.7.2, we show that the Gurobi [32] solver quickly becomes intractable with just 7 blocks!

13

A standard approach to practically solve knapsack problems is to develop specialized approx-
imations for a specific domain of the problem, typically using a greedy algorithm that sorts tasks
according to a task efficiency metric (denoted e;), and then allocates tasks in order, starting from the
highest-efficiency tasks, until the algorithm cannot pack any new tasks [31]. In such algorithms,
the main challenge is coming up with good task efficiency metrics that leverage domain charac-
teristics to meaningfully approximate the optimal solution while remaining practical in terms of
runtime.

Inefficiencies under DPF, seen as a scheduling heuristic. Turns out we can model DPF — our

previous, fairness-oriented algorithm and still the state-of-the-art privacy scheduling algorithm

— as a greedy heuristic for privacy knapsack. DPF schedules tasks with the smallest dominant

share (max; %) first. Folding in task weights, this becomes equivalent to a greedy algorithm with
Wi

an efficiency metric defined as: e; := 7 Unfortunately, given this efficiency metric, DPF
max Y
J

can stray arbitrarily far from the optimal even in simple cases. The reason lies in the maxima

over j, which is crucial to ensure the fair distribution of DP budget, but causes DPF to ignore
multidimensionality in data blocks. Fig. 2.1 gives an example using traditional DP and a workload
of 4 tasks. DPF sorts tasks by dominant share and schedules only one task. Meanwhile, a better
efficiency metric would consider the “area” of a task’s demand, thereby sorting tasks 7>, 73 and
T, before Ty, resulting in 3 tasks getting scheduled. Thus, DPF, despite its compelling weighted
fairness guarantees, is merely a greedy heuristic when it comes to optimizing for efficiencys; it is
not even a proper approximation of the efficiency-optimal allocation, as it can stray arbitrarily far
from it.

Area-based metric for efficient scheduling over blocks. We take inspiration from single-dimensional
knapsacks, in which the efficiency e; of task 7 is usually defined as the task’s weight-to-demand
ratio: e; := w;/d;. A natural extension to multiple blocks uses a known heuristic for multidimen-

sional knapsacks [33] to capture the entire demand of a task:

(2.4)

where % is task i’s DP budget demand for block j, normalized by the remaining capacity of block
J. This normalization is important to express the scarcity of a demanded resource. Unlike the
DPF fair scheduling metric, Eq. 2.4 considers the entire “area” of a task’s demand to compute
its efficiency, addressing the inefficiency from Fig. 2.1. A task requesting a large budget across
blocks is not scheduled even if its demand on any block (dominant share) is small. As we shall see

in experimental evaluation, this heuristic leads to more efficient scheduling than under DPF under

traditional DP.

2.4.2 Efficient Scheduling Under RDP Accounting

The above heuristic is satisfactory for traditional DP accounting, but practitioners and state-of-
the-art ML algorithms use the much more efficient RDP accounting. With RDP, multiple bounds
on the privacy loss can be computed, for various RDP orders o (Eq. 2.3.2). This yields an RDP
order curve €(a) for that computation. For instance, adding noise from a Gaussian with standard
deviation o into a computation results in €(@) = 2?”7 Other mechanisms, such as subsampled
Gaussian (used in DP-SGD) or Laplace (used in simple statistics), induce other RDP curves. These
curves are highly non-linear and their shapes differ among each other. This makes it difficult to
know analytically what the privacy loss function will look like when composing multiple compu-
tations with heterogeneous RDP curves. For this reason, typically the RDP e bound is computed
on a few discrete a values ({1.5,1.75,2,2.5,3,4,5,6,8,16,32,64} [23]), on which the composi-
tion is performed. Importantly, composition of € parameters at each a value is still additive, a key
element of RDP’s practicality.

Fig. 2.2a shows RDP curves for three example computations, each using a popular DP mecha-
nism: the Gaussian would be used for a multidimensional statistic (a histogram); the subsampled
Gaussian would be used in DP-SGD training; and Laplace would be used for a simple statistic (an
average). All these are plausible to co-exist as tasks in an ML/data analytics cluster. These differ-
ent computations exhibit different RDP curves, with different orderings of the Rényi divergence

bound at different a’s. The subsampled Gaussian is tighter at lower « values; the Laplace is tighter

15

c —e— Composition
IS —e— Composition = 25| —— Sampled Gausgi
% 100 | —¢— Sampled Gaussian a —O6— Gaussian
) —6— Gaussian ch) 20 | —A— Laplace
o 10 | —&— Laplace a
g o 19 | “best alpha” for
S 2 Composition
c 1 |
8 @ 0)
£ g 5
o —
Z . | 1
0.01 4 16 64 4 16 64
RDP order (alpha) RDP order (alpha)
(a) RDP curves (b) DP translation

Fig. 2.2: Example RDP curves and DP translation. (a) RDP curves for Gaussian, subsampled Gaussian,
and Laplace mechanisms, each with std-dev o = 2, plus their composition. (b) Translation to (epp, 10‘6)—
DP. The “best” (i.e., tightest) alpha differs among mechanisms. For composition, best is @ = 6, giving
epp =5.5.
for large a@’s. The figure also shows the RDP curve for the composition of the three computations.

Fig. 2.2b shows the translation of these four curves into traditional DP (using Eq. 2.2). For
each computation, any value of @ > 1 will translate into a different traditional €. Some traditional
€ translations are very loose, others are tighter, but they are all valid simultaneously. Because
of this, we can pick the « that gives us the best traditional € guarantee and disregard the rest as
loose bounds. This best alpha differs from computation to computation: in our example, for the
Gaussian it is @ = 16; for the subsampled Gaussian o =~ 6; and for the Laplace @ > 64. The best
alpha for the composition of all three computations is @ ~ 6, yielding (¢ = 5.5,6 = 107°)-DP.
If we were to analyze and compose the three computations directly in traditional DP, we would
obtain a looser global guarantee of (¢ = 7.8, = 107%)-DP. This gap grows fast with the number
of computations. Herein lies RDP’s power, but also a significant challenge when trying to allocate
its privacy budget across competing computations.

Notice that when translating from RDP to traditional DP with Eq. 2.2, one chooses the most
advantageous « for the final traditional DP guarantee, ignoring all other RDP orders. This new «

dimension therefore has a different semantic than the traditional multidimensional knapsack one.

16

Indeed, the traditional knapsack dimension semantic is that an allocation has to be within budget
along all dimensions. This is a good fit for our block dimension, as we saw in §2.4.1. Instead, an
allocation is valid along the @ dimension as long as the allocation is within budget for at least one
dimension. This creates opportunities for efficient scheduling, as the allocator can go over-budget
for all but one « order. It also creates a new challenge, as the « order that will yield the most
efficient allocation is unknown a priori and depends on the chosen combination of tasks. Since
the traditional multidimensional knapsack does not encode this new semantic, we define a new
multidimensional knapsack problem for efficient RDP scheduling.

The RDP privacy knapsack problem. To accommodate RDP, we need to modify the standard
multidimensional knapsack problem to support alpha orders for each block and task demand. We
express the capacity as cj, (the available capacity of block j on order «), each demand vector as
d;je (the demand of task i on block j’s order @), and require that the sum of the demands will be
smaller or equal to the capacity for at least one of the alpha orders. We thus formulate the privacy
knapsack as follows:

n

n
ma :X; subjectto Vj € ,da e A diioXi < Cig- 2.5
xie{O?(l} ; wiX; subj j € [m],3a ; ijaXi = Cjqa (2.5)

Property 1. The decision problem for the privacy knapsack problem is NP-hard.

Property 2. In the single-block case, there is a fully polynomial time approximation scheme (FP-
TAS) for privacy knapsack, i.e., with w™ the highest possible global efficiency, for any n > 0 we

max

can find an allocation with global efficiency W such that w < (1 + n)Ww, with a running time

polynomial in n and 1/n.
Property 3. For m > 2 blocks, there is no FPTAS for the privacy knapsack problem unless P=NP.

While Prop. 1 and 3 are disheartening (though perhaps unsurprising), Prop. 2 gives a glimmer
of hope that at least for single-block instances, we can solve the problem tractably. Indeed, as we
shall see, this property is crucial for our solution.

DPF with multiple RDP alpha orders. Fair scheduling with DPF for RDP can once again be

17

R[‘)\P budget

RDP budget
A

3 3 [] TaskT,
[] maskT,
2 Task T
? % Task Tj
[] TaskT,
! L [] TaskT,

3

0 a, a, a, a, a, a, RDP orders, 0 a, a, a, a, a, a RDP orders,
B, B, Blocks B, B, Blocks
(a) Inefficient allocation with DPF (b) Efficient allocation

Fig. 2.3: Example of allocations with RDP accounting. In (a), DPF treats RDP orders like a regular re-
source and orders tasks by dominant share, allocating only 2 tasks in this example. Meanwhile, (b) leverages
the fact that only one order per block has to be below the capacity (here, a; for block B; and «; for block
B»). Tasks T3 and 75 have a large dominant share of 1.5 but are efficient because they request only 0.5 for
B1’s best alpha, a;.

expressed as an ordering heuristic for the privacy knapsack, in which efficiency is defined as ¢; :=

L P However, this approach is even more inefficient than under traditional DP.
max ja T
ja

In addition to the previous multi-block inefficiency (§2.4.1), this fair scheduling approach ex-
hibits a new inefficiency under RDP, regardless of the number of blocks it is invoked on (e.g., even
if applied to non-block-based DP systems, such as DP SQL databases). Fig. 2.3 gives an example
using two blocks and a workload of 6 tasks, each requesting only 1 block. In Fig. 2.3a, DPF sorts
tasks by the highest demands across all @’s and allocates only 2 tasks. A better efficiency metric
would sort tasks by demands at the @ value that can pack the most tasks (a.k.a., best alpha for
composition), ultimately scheduling 4 tasks in Fig. 2.3b. Note that the best alpha is not necessarily
the same for each block.

We conclude that an efficiency metric that simply takes the maximum of the dominant shares
is neither efficient for scheduling multiple privacy blocks, nor for scheduling privacy budget in
systems that use RDP accounting. However, a direct extension of our “area based” efficiency

metric in Eq. 2.4 does not appropriately handle RDP alpha orders either, as it does not account for

18

the specific semantic of the o order. We next describe our new efficiency metric, that is optimized

for efficiently scheduling tasks across multiple blocks and supports RDP.

2.4.3 DPack Algorithm

Intuitively, to support the “at least one” semantic of the @ order from RDP, we need an ef-
ficiency metric that makes it less attractive to pack a task that consumes a lot of budget at what
will ultimately be the best alpha, defined as the RDP order that packs the most tasks (or the most
weight) while remaining under budget. That best alpha is ultimately the only one for which the
demands of tasks matter and hence should be the one used for computing an efficiency metric. The
challenge is that for workloads consisting of tasks with heterogeneous RDP curves, the best alpha
is not known a priori. Our idea is to approximate it on a smaller set of RDP curves, and to focus a
task’s efficiency metric on that best alpha as the only relevant dimension. Recall from Prop. 2 that
in the single-block case, we can solve privacy knapsack with polynomial-time n-approximation
for arbitrarily small 7 > 0. This means we can solve a single-block knapsack problem separately
for each block j that determines the best alpha that will pack the most tasks (or maximal weight)

among tasks requesting block j, taking only their request for that block into account. We define the

max

) - . - n .
maximum utility for block j and order @ as w o i maxy 2 dijo>0 XiWi subject to); X;id;jo < Cjq.

We take W;“(fx a %n—approximation of w‘;}f" (% is justified by proof below).

Based on this, we define the efficiency of task i as:

w;
e = (2.6)
Zj(l(d

ija s — Amax
™ if (@ == argmax, Wi) else 0)

Alg. 1 shows DPack, our greedy approximation with the efficiency metric in Eq. 2.6. This
algorithm addresses both of the problems we identified with DPF. Moreover, we show that the
manner in which DPack handles RDP is not just better than DPF in particular, but rather has two

important generally desirable properties. First, DPack reduces to the traditional multidimensional

19

Algorithm 1 DPack Offline Algorithm

Input: tasks i, blocks j, RDP orders a capacities ¢,
Input: approximation factor 77, demands d;;,, weights w;
function COMPUTEBESTALPHA(block j)
for Vo do
wihax ;. SINGLEBLOCKKNAPSACK(cy, dija, Wi, 317)

return arg max, whax .,
function COMPUTEEFFICIENCY (task 7, best alphas &?ax)
return w; /3% ; (djjama /¢ jamax)
function CANRUN(task i)
return Vj, e : X dirja < Cja
function SCHEDULE(tasks i)
for Vj do

A

a7 « COMPUTEBESTALPHA(C o, dija> Wi)

sorted_tasks «— tasks.sortBy(COMPUTEEFFICIENCY(&?ax))
for i in sorted_tasks do
if CANRUN(d,) then
Run task i, consuming the demanded budget

knapsack efficiency metric of Eq. 2.4 when only one « exists, e.g. for traditional DP:

Property 4. If the dimension of « values is one (e.g., with traditional DP), DPack reduces to the

traditional multidimensional knapsack heuristic from Eq. 2.4.

Proof. With one dimension, @ = arg maxq w7,]

Second, DPack is a guaranteed approximation of the optimal in the specific cases when such

an approximation is possible, the single-block case:

Property 5. In the single-block case, DPack is a (% + n)-approximation algorithm for privacy

knapsack.
Proof. Call @ £ arg max, W;n;,x By construction we have w%’j‘x <1+ %n)v@%"‘. In the single-

block (index j) case, Eq. 2.6 means that tasks are greedily allocated by decreasing -, a well
ija

known 1/2-approximation to the one dimensional knapsack problem [31]. Hence, w?}fx < (1+

A,

%U)WTSX <A+3(L+3) X0 xwi = (L+ 5 +10) I, xiw. m|

20

Because of Prop. 3, a similar multi-block efficiency guarantee cannot be formulated (for DPack
as well as any other poly-time algorithm). However, §5.6 shows that in practice, DPack performs
close to the optimal solution of privacy knapsack in terms of global efficiency, yet it is a computa-

tionally cheap alternative to that intractable optimal solution.

2.4.4 Adapting to the Online Case

In practice, new tasks and blocks arrive dynamically in a system such as TFX, motivating
the need for an online scheduling algorithm. We adapt our offline algorithm to the online case
by scheduling a batch of tasks on the set of available blocks every 7" units of time. To prevent
expensive tasks from consuming all the budget prematurely, similar to DPF, we schedule each
batch on a fraction of the total budget capacity: at each scheduling step we unlock an additional
1/N fraction of the block capacity. More precisely, at each scheduling time ¢ = kT, we execute

Alg. 1 on the tasks and blocks currently in the system, but we replace block j’s capacity by:

. min([(t —¢;)/T],N)

iy

where €/, is the total capacity of block j (computed from Prop. 2.2), ¢; is the arrival time of
block j, [(t —t;)/T1] is the number of scheduling steps the block has witnessed so far (including
the current step), and A; is the set of tasks previously allocated.

As with the offline algorithm, at the time of scheduling all the tasks are sorted by the scheduling
algorithm. The scheduler tries to schedule tasks one-by-one in order. Any tasks that did not get
scheduled remain in the system until the next scheduling time, and any unused unlocked budget
remains available for future tasks. Users also specify a per-task timeout after which the task is
evicted. T is a parameter of the system that controls how many tasks get batched (and delayed)
before getting scheduled. We evaluate its effect empirically in Fig. ??, and show that beyond a
reasonable batch size all algorithms we study are relatively insensitive to 7.

Finally, to support a global (€, §)-DP guarantee for online tasks over continuous data streams,

21

we use the data block composition introduced by Sage [9, 34]: each data block is associated with
a privacy filter, a DP accounting mechanism enabling adaptive composition under a preset upper-
bound on the privacy loss [35, 36, 37]. Each filter is initiated with €, for traditional DP, or
e(a) =€ - % for RDP. The RDP initial value ensures that translating back to traditional DP
with Eq. 2.2 guarantees (€, §)-DP. A task is granted if, and only if, all filters grant the request (all
blocks have enough budget left). This ensures the following property:

Property 6. DPack enforces (€, 6)-DP over adaptively chosen computations and privacy demands

€(a).

Proof. We provide a proof sketch following the structure used in [9, Theorem 4.2] for basic com-
position. Each task has an (adaptive) RDP requirement for all blocks, with e(a) = 0 for non-
requested blocks. Each data block is associated with a privacy filter [37, Algorithm 1]. A task runs

: : . : _ log(1/6)
if and only if all filters accept the task: applying [37, Theorem 1] ensures e(a) = € — ———=-RDP

a

holds for each block. Applying Eq. 2.2 concludes the proof. m|

2.5 Applicability

It is worth reflecting on the characteristics of workloads under which DPack provides the most
benefit compared to alternatives such as DPF. §2.4.1 gives examples of inefficient DPF operation
with multiple blocks and alpha orders. However, DPF does not always behave inefficiently when
invoked on multiple blocks or with multiple alpha orders. For example, if all the tasks in Fig. 2.1
uniformly demanded three blocks, then DPF would make the optimal choice. The same would
happen if all the tasks in Fig. 2.3 had RDP curves that were all ordered in the same way across
alphas, so that the ordering of highest demands is the same as the ordering of demands at the best
alpha order. In such cases, DPack’s “intelligence” — its appropriate treatment of the multiple blocks
and focus on the best alpha — would not provide any benefit over DPF.

Instead, DPack should be expected to improve on DPF when the workload exhibits heterogene-
ity in one or both of the following two dimensions: (1) number of demanded blocks and (2) best

alphas. (1) The example in Fig. 2.1 exhibits high heterogeneity in demanded blocks, with Task 1

22

demanding three blocks while all the others demanding just one block. (2) The example in Fig. 2.3
exhibits heterogeneity in the best alpha for the different curves. In evaluation (§2.7.2), we demon-
strate this effects using a microbenchmark that is able to explore a wide range of more or less
heterogeneous workloads, showing that indeed, in workloads with more heterogeneity DPack sig-
nificantly outperforms DPF while in cases of homogeneity among all dimensions, DPack performs
similarly to DPF.

For real-world DP ML workloads, we believe it is likely that heterogeneity of demands in both
dimensions — number of blocks and best alphas — would be realistic. For example, a pipeline that
computes some summary statistics over a dataset might run daily on just the latest block, while
a large neural network may need to retrain on data from the past several blocks. This would
result in heterogeneity in number of demanded blocks. Similarly, pipelines that compute simple
statistics would likely employ a Laplace mechanism, while a neural network training would employ
subsampled Gaussian. This would inevitably result in heterogeneity in best alphas, because, as
shown in Fig. 2.2, different mechanisms exhibit very different RDP curves.

Thus, DPack is broadly applicable to: (1) systems that exhibit both of these dimensions of het-
erogeneity (as would DP ML workloads in TFX-like systems, or static SQL databases with multi-
ple partitions); (2) systems that operate on a single block (such as non-partitioned SQL databases)
but perform RDP accounting; (3) systems that operate on multiple blocks but perform other types
of DP accounting, including traditional DP. For all these settings, DPack would provide a benefit

when the workload exhibits heterogeneity.

2.6 Implementation

We implement DPack in two artifacts that we open-source at https://github.com/
columbia/dpack. The first is a Kubernetes-based implementation of DPack. We extend
PrivateKube’s extension to Kubernetes in multiple ways. We add support for batched scheduling
(i.e. schedule tasks every T time units) and task weights. We implement DPack, and add sup-

port for solving the single block knapsack using Gurobi with the Go goop interface [38]. The

23

https://github.com/columbia/dpack
https://github.com/columbia/dpack

Sec. | Workload Setting | Prototype | Results
Q1 | §2.7.2 | microbenchmark offline simulator | Fig.2.4
Q2 | §2.7.2 | microbenchmark offline simulator | Fig. 2.5
Q3 | §2.7.3 | Alibaba, Amazon online simulator | Fig.2.6-2.7
Q4 | §2.7.4 | Alibaba online | Kubernetes | Fig. 2.8

Tab. 2.1: Workload and methodology of each evaluation question.

Kubernetes-based implementation has 924 lines of Go. The second artifact is a simulator that lets
users easily specify and evaluate scheduling algorithms for the offline and online settings under
different workloads. We use a discrete event simulator [39] to efficiently support arbitrarily fine
time resolutions. Users use configuration files to define the workload and resource characteristics
to parameterize scheduling for both online and offline cases. For example, they can define block
and task arrival frequencies, the scheduling period and the block unlocking rate. The simulator also
supports plugging different definitions of efficiency, and different block selection patterns for tasks
(policies). Currently, the simulator supports two patterns: a random selection of blocks without

replacement, and a selection of most recent blocks. The simulator has 6,718 lines of Python.

2.7 Evaluation

We seek to answer four evaluation questions:

Q1: On what types of workloads does DPack improve over DPF, and how close is DPack to Optimal?

Q2: How do the algorithms scale with increasing load?

Q3: Does DPack present an efficiency improvement for plausible workloads? How much does it

trade fairness?

Q4: How does our implementation perform in a realistic setting?

These questions are best answered with distinct workloads and settings, summarized in Tab. 2.1.
First, Q1 and Q2 are best addressed in an offline setting with a simple, tunable workload. To this
end, we develop a microbenchmark consisting of multiple synthetic tasks with distinct RDP curves

and a knob that controls the heterogeneity in demanded blocks and RDP curves (§2.7.2). Second,

24

Q3 and Q4 require a more realistic, online setting and realistic workloads. In absence of a pro-
duction trace of DP ML tasks, we develop a workload generator, called Alibaba-DP, based on
Alibaba’s 2022 ML cluster trace [17]. We map the Alibaba trace to a DP ML workload by map-
ping system metrics to privacy parameters (§2.7.3). While we cannot claim Alibaba-DP is realistic,
it is the first objectively-derived DP task workload generator, and we believe it is a more plausible
workload than those previously used in related works. We plan to release it publicly. Third, Q1-Q3
are algorithmic-level questions independent of implementation and hence we evaluate them in the
simulator. However, Q4 requires an actual deployment on Kubernetes, so we dedicate the last part

of this section to an evaluation on Kubernetes with the Alibaba-DP workload (§2.7.4).

2.7.1 Methodology

Baselines. The main baseline, common across all experiments, is DPF. We consider two other
baselines: Optimal, which is the exact Gurobi-derived privacy knapsack solution for the offline
setting, and FCFS (first-come-first-serve), which schedules tasks in an online setting based on their
order of arrival. The former is relevant for offline experiments of small scale (few tasks/blocks),
since it is not tractable for larger ones. The latter is relevant for online experiments only.

Metrics. Global efficiency: defined as either the number of allocated tasks or the sum of weighted
allocated tasks. Scheduler runtime: measures how fast (in seconds), computationally, a scheduling
algorithm is. Scheduling delay: measures how long tasks are blocked in the waiting queue, for
example because of insufficient unlocked budget or because of the batching period 7'; it is measured
in block inter-arrival periods (e.g., if blocks arrive daily, the unit is days). In real life, the total
waiting time for a task will be the scheduling delay plus scheduler runtime; for our experiments,
since the two are in different units, we never combine them. We expect in reality scheduler runtimes
to be small compared to scheduling delays, for all the evaluated algorithms except for Optimal.
Machine. We use a server with 2 Intel Xeon CPUs E5-2640 v3 @ 2.60GHz (16 cores) and 110GiB

RAM.

25

2.7.2 Offline Microbenchmark (Q1, Q2)

Microbenchmark. We design the microbenchmark to expose knobs that let us systematically
explore a spectrum of workloads ranging from less to more heterogeneous in demanded blocks
and RDP curve characteristics. The microbenchmark consists of 620 RDP curves corresponding
to five realistic DP mechanisms often incorporated in DP ML workloads: {Laplace, Subsampled
Laplace, Gaussian, Subsampled Gaussian, composition of Laplace and Gaussian}. We sample
and parameterize these curves with the following methodology meant to expose two heterogeneity
knobs:

Knob opiocks: To exercise heterogeneity in requested blocks, we sample the number of re-
quested blocks from a discrete Gaussian with mean pp;ocxs and standard deviation opjocrs. The
requested blocks are then chosen randomly from the available blocks. Increasing opocks increases
heterogeneity in demanded blocks.

Knob o To exercise heterogeneity in best alphas, we first normalize the demands (for a block
with initial budget (e, 8) = (10,1077)) and enforce that there is at least one curve with best alpha
a for each a € {3,4,5,6,8,16,32,64}. Second, we group tasks with identical best alphas to form
“buckets”. For each new task, we pick a best alpha following a truncated discrete Gaussian over
the bucket’s indexes, centered in the bucket corresponding to @ = 5 with standard deviation o,.
Third, we sample one task uniformly at random from that bucket. After dropping some outliers
(e.g. curves with €, < 0.05), we rescale the curves to fit any desired value of the average and
the standard deviation of ey, for each best alpha, by shifting the curves up or down. This scaling
lets us change the distribution in best alphas while controlling for the average size of the workload
(in a real workload, the value of €ni, might be correlated with best alpha and other parameters).
Increasing o, increases workload heterogeneity in best alphas.

We explore each heterogeneity knob separately. First, we vary opocks While keeping o, = 0
(i.e. all the tasks have best alpha equal to 5) and up;ocrs = 10. Second, we vary o, while keeping
Oplocks = 0, Uplocks = 1 (i.e. all the tasks request the same single block). In both cases, we keep

€min constant for all tasks. We set enin = 0.1 for the ook €xperiment (to keep the number of

26

—F— Optimal

100 —&— DPack 5
—<— DPF //@

M

200@%5
150

i

2 2

(%) n

< <

° ol

2 2

I I

A= g 3

< 50 © 100

S [ﬁ N S

S op \/N ® 50| —H— Optimal

'g 'g —4A— DPack

= = —*— DPF

c c L L

0 1 2 3 0 2 4 6 8

Opjlocks (Stdev of num blocks) o, (stdev of best alpha)
(a) Block heterogeneity (b) Best alpha heterogeneity

Fig. 2.4: (Q1) DPack under workloads with variable heterogeneity using our microbenchmark.
Global efficiency of the algorithms (y axes) in the offline setting, as heterogeneity increases on the x axes: (a)
variation in number of blocks requested, (b) variation in best alphas for the tasks’ RDP curves. QI Answer:
DPack tracks Optimal closely and significantly outperforms DPF on workloads with high heterogeneity:
0-161% improvement for Fig. 2.4a and 0—67% for Fig. 2.4b.

tasks small enough to be tractable for Optimal) and €p;, = 0.005 for the o, experiment (to have a
large number of tasks with high diversity in €(a)).
Q1: On what types of workloads does DPack improve over DPF, and how close is DPack
to Optimal? Fig. 2.4 compares the schedulers’ global efficiency in the offline setting, as the
heterogeneity of the workload increases in the two preceding dimensions: the number of requested
blocks (Fig. 2.4a) and the best alphas of the tasks’ RDP curves (Fig. 2.4b). Across the entire
spectrum of heterogeneity, DPack closely tracks the optimal solution, staying within 23% of it.
For workloads with low heterogeneity (up to 0.5 stdev in blocks and 1 stdev in best alphas), there
is not much to optimize. DPF itself therefore performs close to Optimal and hence DPack does not
provide significant improvement. As heterogeneity in either dimension increases, DPack starts to
outperform DPF, presenting significant improvement in the number of allocated tasks for over 3
stdev in blocks and 2 stdev in best alphas: 161% and 67% improvement, respectively.

As all three schedulers try to schedule as many tasks as they can with a finite privacy budget,
these 1.0-2.6x additional tasks that DPack is able to schedule are tasks that DPF would never be
able to schedule, because the requested blocks’ budget has been depleted for posterity.

Q2: How do the algorithms scale with increasing load? Fig. 2.5a shows the runtime of our

27

8 w T 200 w -
— —=— Optimal % 180 | —&— Optimal
% 7 —A— DPack | € 160 | —2— DPack
E o DPF Qa0 X DPF . a—a
€57 8 120 A
S 4 A 2 100 — X
E’ 3 ’ A/H -S 80 y(/x—
3 | e ° 60
g2 g 40
3 1 E 20
0 c
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
number of submitted tasks number of submitted tasks
(a) Scheduler runtime as a function of offered (b) Number of allocated tasks as a function of
load. offered load.

Fig. 2.5: (Q2) Scalability under increasing load from the microbenchmark. (a) Scheduler runtime
and (b) number of allocated tasks, as a function of offered load (x axes). Q2 Answer: Optimal becomes
intractable quickly while DPack and DPF remain practical even at high load.

simulator on a single thread. We use a single thread for a fair comparison, but some schedulers can
be parallelized (our Kubernetes implementation is indeed parallelized). We use the microbench-
mark with heterogeneity knobs o, = 4, 0piocks = 10, tpiocks = 1, €min = 0.01 and 7 available
blocks. Optimal’s line stops at x = 200 tasks because after that its execution never finishes. DPack
takes slightly longer than DPF to run because it needs to solve multiple single-block knapsacks.
Fig. 2.5b shows scheduler efficiency in number of allocated tasks as a function of the number of
tasks in the system. DPF performs the worst, unable to efficiently schedule tasks across multiple
blocks and varying alpha order demands. DPack matches Optimal (up to Optimal’s 200 task limit)
and schedules more tasks when it has a larger pool of tasks to choose from, since it can pick the
most efficient tasks. Since the workload has a finite number of different tasks, as we increase the

load, both schedulers reach a plateau where they allocate only one type of task.

2.7.3 Online Plausible Workload (Q3)

We now evaluate online scenarios where tasks and blocks arrive dynamically, and budget is
unlocked over time. The simulator uses a virtual unit of time, where one block arrives each time

unit. Tasks always request the m most recent blocks. For all the evaluated policies we run a batch

28

scheduler on the available unlocked budget, every T blocks.

The Alibaba-DP Workload. We create a macrobenchmark based on Alibaba’s GPU cluster
trace [17]. The trace includes 1.1 million tasks submitted by 1,300 users over 3 months, and
contains each task’s resource demands and the resource allocation over time. We use these metrics
as proxies for task DP budget demands, which do not exist in this trace.

We use machine type (CPU/GPU) as a proxy for DP mechanism type. We assume CPU-based
tasks correspond to mechanisms used for statistics, analytics, or lightweight ML (e.g. XGBoost
or decision trees [40, 41]), while GPU-based tasks correspond to deep learning mechanisms (DP-
SGD or DP-FTRL [42, 43]). We map each CPU-based task to one of the {Laplace, Gaussian,
Subsampled Laplace} curves and each GPU-based task to one of the {composition of Subsampled
Gaussians, composition of Gaussians} curves, at random. We use memory usage as a proxy for
privacy usage by setting traditional DP € as an affine transformation of memory usage (in GB
hours). We don’t claim that memory will be correlated with privacy in a realistic DP workload,
but that the privacy budget might follow a similar distribution (e.g. a power law with many tasks
having small requests and a long tail of tasks with large requests). We compute the number of
blocks required by each task as an affine function of the bytes read through the network. Unlike
the privacy budget proxy, we expect this proxy to have at least some degree of realism when data
is stored remotely: tasks that don’t communicate much over the network are probably not using
large portions of the dataset. Finally, all tasks request the most recent blocks that arrived in the
system and are assigned a weight of 1. We truncate the workload by sampling one month of the
total trace and cutting off tasks that request more than 100 blocks or whose smallest normalized
RDP € is not in [0.001, 1]. The resulting workload, called Alibaba-DP, is an objectively derived
version of the Alibaba trace. We use it to evaluate DPack under a more complex workload than our
synthetic microbenchmark or PrivateKube’s also synthetic workload. We open-source Alibaba-DP
athttps://github.com/columbia/alibaba-dp-workload.

Q3: Does DPack present an efficiency improvement for plausible workloads? How much does

it trade fairness? Fig. 2.6a shows the number of allocated tasks as a function of the number of

29

https://github.com/columbia/alibaba-dp-workload

25k w 25k ; ;

2 K Bpack 2 K T Dpack

3 —6— FCFS 2 —6— FCFS B

T 15k 4 T 15k e

S _ ke =

g 10K ;//ée/’/akh g o (/x//) ___©
yi

o / o) 4 />

O 5k(\ o O r) O 5k </

g O g a/(

S 0 e o
20k 40k 60k 80k 30 60 90 120 150 180

number of submitted tasks number of available blocks
(a) Allocated tasks as a function of submitted (b) Allocated tasks as a function of number of
tasks available blocks

Fig. 2.6: (Q3) Efficiency evaluation on the online Alibaba-DP workload. Number of allocated tasks as
a function of (a) offered load for 90 blocks and (b) available blocks for 60k tasks. Q3 Answer: Alibaba-DP
exhibits sufficient heterogeneity for DPack to present a significant improvement (1.3—1.7X) over DPF.

submitted ones from the Alibaba-DP workload. The results show that as the number of submitted
tasks increases, both DPF and DPack can allocate more tasks, because they have a larger pool
of low-demand submitted tasks to choose from. This is not the case with FCFS, which does not
prioritize low-demand tasks. DPack allocates 22—43% more tasks than DPF, since it packs the
tasks more efficiently. Similarly, Fig. 2.6b shows the number of allocated tasks as a function
of the number of available blocks. As expected, all algorithms can schedule more tasks when
they have more available budget. DPack consistently outperforms DPF, scheduling 30-71% more
tasks. Across all the configurations evaluated in Fig. 2.6a and 2.6b, DPack outperforms DPF by
1.3—1.7x. The results confirm that Alibaba-DP, a workload derived objectively from a real trace,
exhibits sufficient heterogeneity for DPack to show significant benefit.

Efficiency-Fairness Trade-off. While DPack schedules significantly more tasks than DPF on
the Alibaba workload, this increased efficiency comes at the cost of fairness, when we use DPF’s
definition of fairness. To demonstrate this, we run the Alibaba workload with 90 blocks and 60k
tasks, and set the DPF “fair share” of tasks to be %. This means that DPF will always prioritize
tasks that request 51—0 or less of the epsilon-normalized global budget. In the Alibaba trace, using

this definition, 41% of tasks would qualify as demanding less or equal budget than their fair share.

30

(9] °©
§15k g /A
- S 1M e
5] I
g % G500k | S8
S 5k] —
5 —A— DPack Z é% —A— DPack
‘E’ —x— DPF g —x— DPF
=2 —6— FCFS 2 0 —6— FCFS
250 500 750 1000 1250 1500 250 500 750 1000 1250 1500
mean tasks per block mean tasks per block
(a) Original workload (b) Workload with task weights

Fig. 2.7: Evaluation on Amazon Reviews workload from [8]. (a) The original synthetic workload ex-
hibits limited heterogeneity, so there is no room for DPack to improve over DPFE. (b) Adding randomly
selected weights to the tasks creates sufficient heterogeneity for DPack to show an improvement. Global
efficiency is measured as the sum of weights of allocated tasks (y axis).

With DPack, 60% of the allocated tasks are fair-share tasks; with DPF 90% are. However, DPack
can allocate 45% more tasks than DPFE. As expected, this shows that optimizing for efficiency
comes at the expense of fairness. In the case of privacy scheduling, however, due to the finite
nature of the privacy budget, DPF’s fairness guarantees are limited only to the first N fair share
tasks (in the experiment, N = 50); the guarantees do not hold for later-arriving tasks. This makes
the overall notion of fairness as defined by DPF somewhat arbitrary and underscores the merit of
efficiency-oriented algorithms.

Another workload: Amazon Reviews [8]. We also evaluate on the macrobenchmark workload
from the PrivateKube paper [8], which consists of several DP models trained on the Amazon Re-
views dataset [44]. Unlike our Alibaba-DP, which is rooted in a real ML workload trace, this
workload is completely synthetic and very small, and as a result, its characteristics may be very
different from real workloads. Yet, for completeness, we evaluate it here, too. The workload con-
sists two categories of tasks: 24 tasks to train neural networks with a composition of subsampled
Gaussians, and 18 tasks to compute summary statistics with Laplace mechanisms. Unlike for our
Alibaba-DP workload, task arrival needs to be configured for this workload; tasks arrive with a

Poisson process and request the latest blocks. The Amazon Reviews workload has low hetero-

31

Scheduler | Number of allocated tasks
DPack 1269
DPF 1100

Tab. 2.2: Efficiency on Kubernetes prototype with Alibaba-DP.

geneity both in terms of block and the best-alpha variance. Although tasks request up to 50 blocks,
95% of the tasks in this workload request 5 blocks or fewer, and 63% of the tasks request only 1
block. Moreover, tasks have only 2 possible best alphas (4 or 5), with 81% of the tasks with a best
alpha of 5. Hence, per our Q1 results in §2.7.2, we expect DPF to already perform well and leave
no room for improvement for DPack. Fig. 2.7a confirms this: all schedulers perform largely the
same on this workload.

Next, without modifying the privacy budget or the blocks they request, we configure different
weights for submitted tasks, corresponding to different profits the company might get if a task gets
to run. We assume that large tasks (neural networks) are more important than small tasks. Then,
we pick an arbitrary grid of weights while still allowing some small tasks to be more profitable
than some large tasks. Weights are chosen uniformly at random from {10, 50, 100, 500} for large
tasks and {1,5, 10,50} for small tasks. This change implicitly scales the number of requested
blocks and increases heterogeneity. In terms of global efficiency, a task with weight k& demanding
m blocks is roughly similar to a task with weight 1 demanding m/k blocks. Instead of having
most tasks request 1 block, tasks now demand a higher-variance weighted number of blocks (the
variation coefficient is 1.9 instead of 1.3). Fig. 2.7b shows the global efficiency, measured as the
sum of weights of allocated tasks, as a function of the number of submitted tasks. Recall that we

also incorporate task weights in DPF (§2.4.1). Still, DPack now outperforms DPF by 9-50%.

2.7.4 Kubernetes Implementation Evaluation (Q4)

Q4: How does our implementation perform in a realistic setting? We evaluate the Alibaba-DP
workload on our Kubernetes system. Scheduler runtime: We first estimate the scheduler’s over-

head by emulating an offline scenario, where all the tasks and blocks are available. To do so, we

32

100 w 1 ‘ ‘
— —a— DPack 1 < —A— DPack 7‘
© Y- 5 O
= s 3
5 o g
o ©
3 40 X< s
2 L s
c =
3 " g L o
0 -..:: 0 S = L L L
2000 3000 4000 1 2 3 4
number of submitted tasks scheduling delay (virtual time)
(a) Scheduler runtime as a function of submit- (b) CDF of scheduling delay (excluding sched-
ted tasks in the offline experiment (7" = 25). uler runtime) for allocated tasks in the online

experiment (7" = 5).

Fig. 2.8: (Q4) Evaluation on Kubernetes with Alibaba-DP. DPack has only a modestly higher runtime
than DPF, as system-related overheads dominate. In the online setting, scheduling delays are nearly identical
across schedulers.

use a large T = 25. For this experiment, we generate a total of 4,190 tasks by sampling 2 days
of the Alibaba cluster trace. The experiment shows the runtime as a function of the number of
submitted tasks. It uses 10 offline and 20 online blocks. Fig. 2.8a shows the total time spent in
the scheduling procedure, which includes Kubernetes-related overheads (e.g. inter-process com-
munication and synchronization). As noted in §2.5a, DPack has a higher overhead since it solves
knapsack subproblems. DPack has a higher runtime overhead than DPF since it has to recompute
the efficiency of each task when the global state changes after a scheduling cycle, while DPF com-
putes the dominant share of each task only once. Nevertheless, the overhead is modest, because:
(a) the Kubernetes overheads dominate, and (b) the DPack (and DPF) algorithms are parallelized.
In addition, since DP tasks are often long-running (e.g. distributed training of deep neural net-
works), the scheduling delay of DPack in many cases is insignificant compared to the total task
completion time.

Scheduling delays and efficiency: We run an experiment to measure the scheduling delays
(Fig. 2.8b) and efficiency (Table 2.2) in an online scenario on Kubernetes. We use the same work-
load and number of blocks as in Fig. 2.8a, with 7" = 5. As before, DPack is more efficient than

DPFE. Scheduling delay, measured in virtual time, excluding scheduler runtime, shows no signifi-

33

cant difference between the two policies.

2.8 Related Work

We have already covered the details of the most closely related works: DPF and related sys-
tems for privacy scheduling [9, 8, 10] (background in §2.3.3, efficiency limitations in §2.4.1 and
§2.4.2, and experimental evaluation in §5.6). To summarize, we adopt the same threat and system
models, but instead of focusing on fairness, we focus on efficiency because we believe that the
biggest pressure in globally-DP ML systems will ultimately be how to fit as many models as pos-
sible under a meaningful privacy guarantee. The authors of Cohere [10] concurrently developed
a privacy management system with novel partitioning and accounting features. They also investi-
gate efficiency-oriented privacy resource allocation, but they rely on an ILP solver for scheduling,
which is similar to our Optimal baseline (§2.7.1). Their optimal solver faces the same scalability
issues we identified, unless tasks query non-overlapping block ranges, thus reducing the number of
constraints in the privacy knapsack. Cohere supports DPack as an approximate scheduler, and the
authors observe that “the DPK heuristic> achieves within 96% and 98% of optimal request volume
and utility, respectively” on their workload. This further validates DPack.

Bin packing for data-intensive tasks. Multidimensional knapsack and bin packing are classic
NP-hard problems [45, 46, 47]. In recent years, several heuristics for these problems have been
proposed to increase resource utilization in big data and ML clusters [16, 11, 48, 49]. Some of these
heuristics assign a weight to each dimension and reduce to a scalar problem with a dot product [31,
33]. We show that the Rényi formulation of differential privacy generates a new variation of the
multidimensional knapsack problem, making standard approximations and heuristics unsuitable.

Scheduling trade-offs. Fairness and performance is a classic tradeoff in scheduling even in single-
resource scenarios. Shortest-remaining-time-first (SRTF) is optimal for minimizing the average
completion time, but it can be unfair to long-running tasks and cause starvation. Recent works

have shown a similar fairness and efficiency tradeoff in the multi-resource setting [11]. Although

2DPack was known as DPK in a previous preprint of our paper.

34

max-min fairness can provide both fairness and efficiency for a single resource, its extension to
multi-resource fairness [50] can have arbitrarily low efficiency in the worst case [12]. In this
paper, we highlight the fairness-efficiency tradeoff when allocating privacy blocks among multiple
tasks with RDP.

Differential privacy. The literature on DP algorithms is extensive, including theory for most
popular ML algorithms (e.g. SGD [42, 51], federated learning [52]) and statistics (e.g. contingency
tables [53], histograms [54]), and their open source implementations [55, 56, 57, 25, 26]. These
lower-level algorithms run as tasks in our workloads. Some algorithms focus on workloads [58],
including on a data streams [59], but they remain limited to linear queries. Some DP systems
also exist, but most do not handle ML workloads, instead providing DP SQL-like [60, 61, 29] and
MapReduce interfaces [62], or support for summary statistics [63]. Sage [9], PrivateKube [8] and

Cohere [10], previously discussed, handle ML workloads.

2.9 Conclusions

This paper for the first time explores how data privacy should be scheduled efficiently as a
computing resource. It formulates the scheduling problem as a new type of multidimensional
knapsack optimization, and proposes and evaluates an approximate algorithm, DPack, that is able
to schedule significantly more tasks than the state-of-the-art. By taking the first step of building an
efficient scheduler for DP, we believe this work builds a foundation for tackling several important
open challenges for managing access to DP in real-world settings, such as supporting tasks with
different utility functions, investigating job-level scheduling, and better scheduling of traditional

computing resources alongside privacy blocks.

35

Chapter 3: Turbo: Effective Caching for Differentially-Private Databases

3.1 Overview

Differentially-private (DP) databases allow for privacy-preserving analytics over sensitive datasets
or data streams. In these systems, user privacy is a limited resource that must be conserved with
each query. We propose Turbo, a novel, state-of-the-art caching layer for linear query workloads
over DP databases. Turbo builds upon private multiplicative weights (PMW), a DP mechanism that
is powerful in theory but ineffective in practice, and transforms it into a highly-effective caching
mechanism, PMW-Bypass, that uses prior query results obtained through an external DP mech-
anism to train a PMW to answer arbitrary future linear queries accurately and “for free” from a
privacy perspective. Our experiments on public Covid and CitiBike datasets show that Turbo with
PMW-Bypass conserves 1.7 — 15.9x more budget compared to vanilla PMW and simpler cache
designs, a significant improvement. Moreover, Turbo provides support for range query workloads,
such as timeseries or streams, where opportunities exist to further conserve privacy budget through
DP parallel composition and warm-starting of PMW state. Our work provides a theoretical foun-

dation and general system design for effective caching in DP databases.

3.2 Introduction

ABC collects lots of user data from its digital products to analyze trends, improve existing
products, and develop new ones. To protect user privacy, the company uses a restricted interface
that removes personally identifiable information and only allows queries over aggregated data from
multiple users. Internal analysts use interactive tools like Tableau to examine static datasets and
run jobs to calculate aggregate metrics over data streams. Some of these metrics are shared with

external partners for product integrations. However, due to data reconstruction attacks on similar

36

“anonymized” and “aggregated” data from other sources, including the US Census Bureau [64]
and Aircloak [65], the CEO has decided to pause external aggregate releases and severely limit the
number of analysts with access to user data statistics until the company can find a more rigorous
privacy solution.

The preceding scenario, while fictitious, is representative of what often occurs in industry and
government, leading to obstacles to data analysis or incomplete privacy solutions. In 2007, Netflix
withdrew “anonymized” movie rating data and canceled a competition due to de-anonymization
attacks [66]. In 2008, genotyping aggregate information from a clinical study led to the revelation
of participants’ membership in the diagnosed group, prompting the National Institutes of Health
to advise against the public release of statistics from clinical studies [67]. In 2021, New York City
excluded demographic information from datasets released from their CitiBike bike rental service,
which could reveal sensitive user data [68]. The city’s new, more restrained data release not only
remains susceptible to privacy attacks but also prevents analyses of how demographic groups use
the service.

Differential privacy (DP) provides a rigorous solution to the problem of protecting user privacy
while analyzing and sharing statistical aggregates over a database. DP guarantees that analysts
cannot confidently learn anything about any individual in the database that they could not learn
if the individual were not in the database. Industry and government have started to deploy DP
for various use cases [69], including publishing trends in Google searches related to Covid [70],
sharing LinkedIn user engagement statistics with outside marketers [71], enabling analyst access
to Uber mobility data while protecting against insider attacks [72], and releasing the US Census’
2020 redistricting data [73]. To facilitate the application of DP, industry has developed a suite of
systems, ranging from specialized designs like the US Census TopDown [73] and LinkedIn Audi-
ence Engagements [71] to more general DP SQL systems, like GoogleDP [29], Uber Chorus [72],
and Tumult Analytics [30].

DP systems face a significant challenge that hinders their wider adoption: they struggle to han-

dle large workloads of queries while maintaining a reasonable privacy guarantee. This is known as

37

the “running out of privacy budget” problem and affects any system, whether DP or not, that aims
to release multiple statistics from a sensitive dataset. A seminal paper by Dinur and Nissim [74]
proved that releasing too many accurate linear statistics from a dataset fundamentally enables its
reconstruction, setting a lower bound on the necessary error in queries to prevent such reconstruc-
tion. Successful reconstructions of the US Census 2010 data [64] and Aircloak’s data [65] from the
aggregate statistics released by these entities exemplify this fundamental limitation. DP, while not
immune to this limitation, provides a means of bounding the reconstruction risk. DP randomizes
the output of a query to limit the influence of individual entries in the dataset on the result. Each
new DP query increases this limit, consuming part of a global privacy budget that must not be
exceeded, lest individual entries become vulnerable to reconstruction.

Recent work proposed treating the global privacy budget as a system resource that must be man-
aged and conserved, similar to traditional resources like CPU [8]. When computation is expensive,
caching is a go-to solution: it uses past results to save CPU on future computations. Caches are
ubiquitous in all computing systems — from the processor to operating systems and databases —
enabling scaling to much larger workloads than would otherwise be afforded with fixed resources.
In this paper, we thus ask: How should caching work in DP systems to significantly increase the
number of queries they can support under a privacy guarantee? While DP theory has explored
algorithms to reuse past query results to save privacy budget in future queries, there is no general
DP caching system that is effective in common practical settings.

We propose Turbo, the first general and effective caching layer for DP SQL databases that
boosts the number of linear queries (such as sums, averages, counts) that can be answered accu-
rately under a fixed, global DP guarantee. In addition to incorporating a traditional exact-match
cache that saves past DP query results and reuses them if the same query reappears, Turbo builds
upon a powerful theoretical construct, known as private multiplicative weights (PMW) [75], that
leverages past DP query results to learn a histogram representation of the dataset that can go on
to answer arbitrary future linear queries for free once it has converged. While PMW has com-

pelling convergence guarantees in theory, we find it ineffective in practice, being overrun even by

38

an exact-match cache.

We make three main contributions to PMW design to boost its effectiveness and applicability.
First, we develop PMW-Bypass, a variant of PMW that bypasses it during the privacy-expensive
learning phase of its histogram, and switches to it once it has converged to reap its free-query
benefits. This change requires a new mechanism for updating the histogram despite bypassing the
PMW, plus new theory to justify its convergence. The PMW-Bypass technique is highly effective,
significantly outperforming both the exact-match cache and vanilla PMW in the number of queries
it can support. Second, we optimize our mechanisms for workloads of range queries that do not
access the entire database. These types of queries are typical in timeseries databases and data
streams. For such workloads, we organize the cache as a tree of multiple PMW-Bypass objects and
demonstrate that this approach outperforms alternative designs. Third, for streaming workloads,
we develop warm-starting procedures for tree-structured PMW-Bypass histograms, resulting in
faster convergence.

We formally analyze each of our techniques, focusing on privacy, per-query accuracy, and con-
vergence speed. Each technique represents a contribution on its own and can be used separately, or,
as we do in Turbo, as part of the first general, effective, and accurate DP-SQL caching design. We
prototype Turbo on TimescaleDB, a timeseries database, and use Redis to store caching state. We
evaluate Turbo on workloads based on Covid and CitiBike datasets. We show that Turbo signifi-
cantly improves the number of linear queries that can be answered with less than 5% error (w.h.p.)
under a global (10, 0)-DP guarantee, compared to not having a cache and alternative cache designs.
Our approach outperforms the best-performing baseline in each workload by 1.7 to 15.9 times, and
even more significantly compared to vanilla PMW and systems with no cache at all (such as most
existing DP systems). These results demonstrate that our Turbo cache design is both general and
effective in boosting workloads in DP SQL databases and streams, making it a promising solution
for companies like ABC that seek an effective DP SQL system to address their user data analy-
sis and sharing concerns. We make Turbo available open-source at https://github.com/

columbia/turbo, part of a broader set of infrastructure systems we are developing for DP, all

39

https://github.com/columbia/turbo
https://github.com/columbia/turbo

described here: https://systems.cs.columbia.edu/dp-infrastructure/.

3.3 Background

Threat model. We consider a threat model known as centralized differential privacy: one or
more untrusted analysts query a dataset or stream through a restricted, aggregate-only interface
implemented by a trusted database engine of which Turbo is a trusted component. The goal of the
database and Turbo is to provide accurate answers to the analysts’ queries without compromising
the privacy of individual users in the database. The two main adversarial goals that an analyst may
have are membership inference and data reconstruction. Membership inference is when the adver-
sary wants to determine whether a known data point is present in the dataset. Data reconstruction
involves reconstructing unknown data points from a known subset of the dataset. To achieve their
goals, the adversary can use composition attacks to single out contributions from individuals, col-
lude with other analysts to coordinate their queries, link anonymized records to public datasets,
and access arbitrary auxiliary information except for timing side-channel information. Previous
research demonstrated attacks under this threat model [66, 76, 77, 65, 64, 20].
Differential privacy (DP). DP [7] randomizes aggregate queries over a dataset to prevent mem-
bership inference and data reconstruction [78, 79]. DP randomization (a.k.a. noise) ensures that
the probability of observing a specific result is stable to a change in one datapoint (e.g., if user x is
removed or replaced in the dataset, the distribution over results remains similar). More formally,
a query Q is (€, 0)-DP if, for any two datasets D and D’ that differ by one datapoint, and for any
result subset S we have: P(Q(D) € S) < e‘P(Q(D’) € S) + 8. € quantifies the privacy loss due to
releasing the DP query’s result (higher means less privacy), while ¢ can be interpreted as a failure
probability and is set to a small value.

Two common mechanisms to enforce DP are the Laplace and Gaussian mechanisms. They
add noise from an appropriately scaled Laplace/Gaussian distribution to the true query result, and
return the noisy result. As an example, for counting queries and a database of size n, adding noise

from Laplace (0, 1/n¢€), ensures (€, 0)-DP (a.k.a. pure DP); adding noise from Gaussian(0, /2 1In(1.25/6) /ne¢)

40

https://systems.cs.columbia.edu/dp-infrastructure/

ensures (€, 0)-DP. The accuracy for such queries can be controlled probabilistically by converting
it into the (€, 0) parameters.

Answering multiple queries on the same data fundamentally degrades privacy [74]. DP quan-
tifies this over a sequence of DP queries using the composition property, which in its basic form
states that releasing two (€1, 01)-DP and (€3, 62)-DP queries is (€] + €3, 01 + d2)-DP. When queries
access disjoint data subsets, their composition is (max(ej, €2), max(dy, §2))-DP and is called par-
allel composition. Using composition, one can enforce a global (eg, dg)-DP guarantee over a
workload, with each DP query “consuming” part of a global privacy budget that is defined upfront
as a system parameter [35].

Good values of the global privacy budget in interactive DP SQL systems remain subject for

debate [80], but generally, an ideal value for strong theoretical guarantees is e = 0.1, while
€ = 1 are considered acceptable. Larger values are often considered vacuous semantically, since
individuals’ privacy risk grows with e“¢. In this paper, we aim to achieve values of ¢ = 1 or
smaller over a query workload.
Private multiplicative weights (PMW). PMW is a DP mechanism to answer online linear queries
with bounded error [75]. We defer detailed description of PMW, plus an example illustrating its
functioning, to §3.5 and only give here an overview. PMW maintains an approximation of the
dataset in the form of a histogram: estimated counts of how many times any possible data point
appears in the dataset. When a query arrives, PMW estimates an answer using the histogram and
computes the error of this estimate against the real data in a DP way, using a DP mechanism called
sparse vector (SV) [81] (described shortly). If the estimate’s error is low, it is returned to the ana-
lyst, consuming no privacy budget (i.e., the query is answered “for free”). If the estimate’s error is
large, then PMW executes the DP query on the data with the Laplace/Gaussian mechanism, con-
suming privacy budget as needed. It returns the DP result and also uses it to update the histogram
for more accurate estimates to future queries.

An additional cost in using PMW comes from the SV, a well-known DP mechanism that can be

used to test the error of a sequence of query estimates against the ground truth with DP guarantees

41

and limited privacy budget consumption [81]. We refer the reader to textbook descriptions of SV
for detailed functioning [81] and provide here only an overview of its semantics. SV is a stateful
mechanism that receives queries and estimates for their results one by one, and assesses the error
between these estimates and the ground-truth query results. While the estimates have error below a
preset threshold with high probability, SV returns success and consumes zero privacy. However, as
soon as SV detects a large-error estimate, it requires a reset, which is a privacy-expensive operation
that re-initializes state within the SV to continue the assessments. In common SV implementations,
a reset costs as much as 3x the privacy budget of executing one DP query on the data.

The theoretical vision of PMW is as follows. Under a stream of queries, PMW first goes
through a “training” phase, where its histogram is inaccurate, requiring frequent SV resets and
consuming budget. Failed estimation attempts update the histogram with low-error results ob-
tained by running the DP query. Once the histogram becomes sufficiently accurate, the SV tests
consistently pass, thereby ameliorating the initial training cost. Theoretical analyses provide a
compelling worst-case convergence guarantee for the histogram, determining a worst-case number
of updates required to train a histogram that can answer any future linear query with low error [58].
However, no one has examined whether this worst-case bound is practical and if PMW outperforms

natural baselines, such as an exact-match cache.

3.4 Turbo Overview

Turbo is a caching layer that can be integrated into a DP SQL engine, significantly increasing
the number of linear queries that can be executed under a fixed, global (eg, 6)-DP guarantee. We
focus on linear queries like sums, averages, and counts (defined in §3.5), which are widely used in
interactive analytics and constitute the class of queries supported by approximate databases such
as BlinkDB [82]. These queries enable powerful forms of caching like PMW, and also allow for
accuracy guarantees, which are important when doing approximate analytics, as one does on a DP

database.

42

3.4.1 Design Goals

(GD)

(G2)

(G3)/(G4)

(GS)

(G6)

(G7)

In designing Turbo, we were guided by several goals:
Guarantee privacy: Turbo must satisfy (eg, dG)-DP.

Guarantee accuracy: Turbo must ensure («, 8)-accuracy for each query, defined for @ > 0,
B € (0,1) as follows: if R” and R are the returned and true results, then |R’ — R| < a with

(1 — B) probability. If 8 is small, a result is @-accurate w.h.p. (with high probability).

Provide worst-case convergence guarantees but optimize for empirical convergence: We aim
to maintain PMW’s theoretical convergence (G3), but we prioritize for empirical convergence
speed, a new metric that measures, on a workload, the number of updates needed to answer

most queries for free (G4).

Improve privacy budget consumption: We aim for significant improvements in privacy budget
consumption compared to both not having a cache and having an exact-match cache or a vanilla

PMW.

Support multiple use cases: Turbo should benefit multiple important workload types, including

static and streaming databases, and queries that arrive over time.
Easy to configure: Turbo should include few knobs with fairly stable performance.

(G1) and (G2) are strict requirements. (G3) and (G4) are driven by our belief that DP systems

should not only possess meaningful theoretical properties but also be optimized for practice. (G5)

1s our main objective. (G6) requires further attention, given shortly. (G7) is driven by the limited

guidance from PMW literature on parameter tuning. PMW meets goals (G1-G3) but falls signifi-

cantly short for (G4-G7). Turbo achieves all goals; we provide theoretical analyses for (G1-G3) in

§3.5 and empirical evaluations for (G4-G7) in §5.6.

43

3.4.2 Use Cases

The DP literature is fragmented, with different algorithms developed for different use cases.
We seek to create a general system that supports multiple settings, highlighting three here:

(1) Non-partitioned databases are the most common use case in DP. A group of untrusted analysts
issue queries over time against a static database, and the database owner wishes to enforce a global
DP guarantee. Turbo should allow a larger workload of queries compared to existing approaches.

(2) and (3) Partitioned databases are less frequently investigated in DP theory literature, but
important to distinguish in practice [83, 84]. When queries tend to access different data ranges,
it is worth partitioning the data and accounting for consumed privacy budget in each partition
separately through DP’s parallel composition. This lowers privacy budget consumption in each
partition and permits more non- or partially-overlapping queries against the database. This kind
of workload is inherent in timeseries and streaming databases, where analysts typically query the
data by windows of time, such as how many new Covid cases occurred in the week after a certain
event, or what is the average age of positive people over the past week. We distinguish two cases:

(2) Partitioned static database, where the database is static and partitioned by an attribute that
tends to be accessed in ranges, such as time, age, or geo-location. All partitions are available at the
beginning. Queries arrive over time and most are assumed to run on some range of interest, which
can involve one or more partitions. Turbo should provide significant benefit not only compared to
the baseline caching techniques, but also compared to not having partitioning.

(3) Partitioned streaming database, where the database is partitioned by time and partitions
arrive over time. In such workloads, queries tend to run continuously as new data becomes avail-
able. Hence, new partitions see a similar query workload as preceding partitions. Turbo should
take advantage of this similarity to further conserve privacy.

For all three use cases, we aim to support online workloads of queries that are not all known
upfront. As §4.8 reviews, most works on optimizing global privacy budget consumption operate

in the offline setting, where all queries are known upfront. For that setting, algorithms are known

44

to answer all queries simultaneously with optimal use of privacy budget. However, this setting
is unrealistic for real use cases, where analysts adapt their queries based on previous results, or
issue new queries for different analyses. In such cases, which correspond to the online setting, we
require adaptive algorithms that accurately answer queries on-the-fly. Turbo does this by making

effective use of PMW, as we next describe.

3.4.3 Turbo Architecture

Fu4.3 shows the Turbo architecture. It is a caching layer that can be added to a DP SQL engine,
like GoogleDP [29], Uber Chorus [72], or Tumult Analytics [30], to boost the number of linear
queries that can be answered accurately under a fixed global DP guarantee. The filled components
indicate our additions to the DP SQL engine, while the transparent components are standard in DP
SQL engines. Here is how a typical DP SQL engine works without Turbo. Analysts issue queries
against the engine, which is trusted to enforce a global (&g, 0)-DP guarantee. The engine executes
the queries using a DP query executor, which adds noise to query results with the Laplace/Gaussian
mechanism and consumes a part of the global privacy budget. A budget accountant tracks the
consumed budget; when it runs out, the DP SQL engine either stops responding to new queries (as
do Chorus and Tumult Analytics) or sacrifices privacy by “resetting” the budget (as does LinkedIn
Audience Insights). We assume the former.

Turbo intercepts the queries before they go into the DP query executor and performs a very
proactive form of caching for them, reusing prior results as much as possible to avoid consuming
privacy budget for new queries. Turbo’s architecture is organized in two types of components:
caching objects (denoted in light-orange background in Fig. 4.3) and functional components that
act upon them (denoted in grey background).

Caching objects. Turbo maintains several types of caching objects. First, the Exact-Cache stores
previous queries and their DP results, allowing for direct retrieval of the result without consuming
any privacy budget when the same query is seen again on the same database version. Second, the

PMW-Bypass is an improved version of PMW that reduces privacy budget consumption during the

45

Data Analyst —_—
(untrusted) »
i8]
query result

DP SQL Engine (trusted)
—enforces (EG, 6G)-DP, e.g., GoogleDP, Chorus, Tumult

Query Parser

DP Privacy Accountant (stops when (g, &) reached)

linear query? result (a-accurate
pass it through Turbo. with 1-8 prob.)
Turbo
split query
subqueries

Exact-Cache Tree

i

(7]

[}

S

Exact-Cache el 8
result, bt 7
[1.1] ifany | 2 o S
pé,ly for Q1, a1 [DP result CR1 3 u’j g
privacy Q2, a2 [DP result CR2 = -
budget L ° o %
used _g i <
k=
not cached or not [S £ <
<] o ®
accurate enough o 5 .
£k
PMW-B Tree | - X ©
ypass Tree . 2 g

A e R e

P ©

PMW-Bypass 2

=}

[.1] histogram-
based
result
in or
— |

l

| calibrate (g, 5) for (a, B) |

subquery, (g,) fresh-noise result

non-linear query?
Turbo can't help.

pay (g, d) DP Query Executor /\

—e.g., Laplace or Gaussian mechanism

subquery true result

DBMS (trusted)

—static or streaming, e.g., PostgreSQL or TimescaleDB
—optionally partitioned (e.g., by timestamp, age, ...)

% 2 [&8 [4 |

T T T T

Fig. 3.1: Tur% architecture.

training phase of its histogram (§3.5.3). Given a query, PMW-Bypass uses an effective heuristic to
judge whether the histogram is sufficiently trained to answer the query accurately; if so, it uses it,
thereby spending no budget. Critically, PMW-Bypass includes a mechanism to externally update
the histogram even when bypassing it, to continue training it for future, free-budget queries.

Turbo aims to enable parallel composition for workloads that benefit from it, such as time-

series or streaming workloads, by supporting database partitioning. In theory, partitions could be
defined by attributes with public values that are typically queried by range, such as time, age, or
geo-location. In this paper, we will focus on partitioning by time. Turbo uses a tree-structured
PMW-Bypass caching object, consisting of multiple histograms organized in a binary tree, to sup-
port linear range queries over these partitions effectively (§3.5.4). This approach conserves more
privacy budget and enables larger workloads to be run when queries access only subsets of the
partitions, compared to alternative methods.
Functional components. When Turbo receives a linear query through the DP SQL engine’s query
parser, it applies its caching objects to the query. If the database is partitioned, Turbo splits the
query into multiple sub-queries based on the available tree-structured caching objects. Each sub-
query is first passed through an Exact-Cache, and if the result is not found, it is forwarded to a
PMW-Bypass, which selects whether to execute it on the histogram or through direct Laplace/-
Gaussian. For sub-queries that can leverage histograms, the answer is supplied directly without
execution or budget consumption. For sub-queries that require execution with Laplace/Gaussian,
the (e,) parameters for the mechanism are computed based on the (@, 8) accuracy parameters,
using the “calibrate (e, d) for (@, 8)” functional component in Fig. 4.3. Then, each sub-query and
its privacy parameters are passed to the DP query executor for execution.

Turbo combines all sub-query results obtained from the caching objects to form the final result,
ensuring that it is within @ of the true result with probability 1— £ (functional component “combine
results”). New results computed with fresh noise are used to update the caching objects (func-
tional component “update histograms and Exact-Caches”). Additionally, Turbo includes cache

management functionality, such as “warm-start of histograms,” which reuses trained histograms

47

from previous partitions to warm-start new histograms when a new partition is created (§3.5.5).
This mechanism is effective in streams where the data’s distribution and query workload are stable
across neighboring partitions. Theoretical and experimental analyses show that external histogram
updates and warm-starting give convergence properties similar to, but slightly slower than, vanilla

PMW.

3.5 Detailed Design

We next detail the novel caching objects and mechanisms in Turbo, using different use cases
from §3.4.2 to illustrate each concept. We describe PMW-Bypass in the static, non-partitioned
database, then introduce partitioning for the tree-structured PMW-Bypass, followed by the addition
of streaming to discuss warm-start procedures. We focus on the Laplace mechanism and basic
composition, thus only discussing pure (e,0)-DP and ignoring 6. We also assume f is small

enough for Turbo results to count as a-accurate w.h.p.

3.5.1 Notation

Our algorithms require some notation. Given a data domain X, a database x with n rows can be
represented as a histogram i € N¥ as follows: for any data point v € X, h(v) denotes the number
of rows in x whose value is v. h(v) is the bin corresponding to value v in the histogram. We denote
N = |X| the size of the data domain and n the size of the database. When X has the form {0, 1}¢,
we call d the data domain dimension. Example: a database with 3 binary attributes has domain
X = {0, 1}3 of dimension d = 3 and size N = §; h(0,0, 1) is the number of rows that are equal to
(0,0, 1). §4.3.1 exemplifies a database, its dimensions, and its histogram.

We define linear queries as SQL queries that can be transformed or broken into the following
form:

SELECT AVG (%) FROM (SELECT g(A, B, C, ...) FROM Table),
where g takes d arguments (one for each attribute of Table, denoted A, B, C,...) and outputs

a value in [0,1]. When g has values in {0, 1}, a query returns the fraction of rows satisfying

48

(a) “Covid” table: (b) Previously executed queries:

Time (T) Positive (P) | Age Bracket (A) Q1: SELECT COUNT(*) FROM Covid
02/01/21 0 0 (1-17) WHERE Positive=1
02/01/21 1 1 (18-49) Q2: SELECT COUNT(*) FROM Covid
02/02/21 ! 2 (5084 WHERE AgeBracket=0
02/02/21 1 3 (65+)

... say n=100 total rows ...

(c) Histogram state after executing Q1, then Q2:

A=0 A=1 A=2 A=3

h(0,0): 12.5->18.3->8 | h(0,1): 12.5->18.3->21.7 | h(0,2): 12.5->18.3->21.7 | h(0,3): 12.5->18.3->21.7

(real: 13) c:1 (real: 27) c:0 (real: 15) c:0 (real: 25) c:0
P=1 h(1,0): 12.5->6.7->2.9 | h(1,1): 12.5->6.7->8 h(1,2): 12.5->6.7->8 h(1,3): 12.5->6.7->8
- (real: 3) c:2 (real: 5) c: 1 (real: 8) c: 1 (real: 4) c: 1

Format: h(p,a): default-bin-value->value-after-Q1->value-after-Q2 (current value)
real: real value of the histogram bin (no DP, included as reference for h(v))
c: number of purposeful updates to the histogram bin

(d) Next query to execute:
Q3: SELECT COUNT(*) FROM Covid WHERE Positive=1 AND AgeBracket=0

Fig. 3.2: Running example. (a) Simplified Covid tests dataset with n = 100 rows and data domain
size N = 8 for the two non-time attributes, test outcome P and subject’s age bracket A. (b) Two
queries that were previously run. (c) State of the histogram as queries are executed. (d) Next query
to run.

predicate q. To get raw counts, we multiply by n, which we assume is public information. PMW
(and hence Turbo) is designed to support only linear queries. Examples of non-linear queries are:

maximum, minimum, percentiles, top-k.

3.5.2 Running Example

Fig. 3.2 gives a running example inspired by our evaluation Covid dataset. Analysts run queries
against a database consisting of Covid test results over time. Fig. 3.2(a) shows a simplified version
of the database, with only three attributes: the test’s date, T; the outcome, P, which can be 0 or 1

for negative/positive; and subject’s age bracket, A, with one of four values as in the figure. The

49

database could be either static or actively streaming in new test data. Initially, we assume it static
and ignore the T attribute. Our example database has n = 100 rows and data domain size N = 8
for P and A.

Fig. 3.2(b) shows two queries that were previously executed. While queries in Turbo return
the fraction of entries satisfying a predicate, for simplicity we show raw counts. Q1 requests the
positivity rate and Q2 the fraction of tested minors. Fig. 3.2(c) illustrates the histogram repre-
sentation corresponding to the dataset, as estimated by the PMW algorithm, whose execution we
discuss shortly. Fig. 3.2(d) shows the next query that will be executed, Q3, requesting the fraction
of positive minors. Q3 is not identical to either Q1 or Q2, but it is correlated with both, as it
accesses data that overlaps with both queries. Thus, while neither Q1’s nor Q2’s DP results can be
used to directly answer Q3, intuitively, they both should help. That is the insight that PMW (and
PMW-Bypass) exploits through its query-by-query build-up of a DP histogram representation of
the database that becomes increasingly accurate in bins that are accessed by more queries.

Fig. 3.2(c) shows the state of the histogram after executing Q1 and Q2 but before executing
Q3. Each bin in the histogram stores an estimation of the number of rows equal to (p,a). This
is the h(p, a) field in the figure, for which we show the sequence of values it has taken following
updates due to Q1 and Q2. Initially, i(p,a) in all bins is set assuming a uniform distribution
over P X A; in this case the initial value was n/N = 12.5. The figure also shows the real (non-
private) count for each bin (denoted real), which is not part of the histogram, but we include it as
a reference. As queries are executed, h(p, a) values are updated with DP results, depending on
which bins are accessed. Q1 and Q2 have already been executed, and both are assumed to have
resorted to the Laplace mechanism, so they both contributed DP results to specific bins (we specify
the update algorithm later when discussing Alg. 2). Q1 accessed, and hence updated, data in the
P =1 bins (the bottom row of the histogram). Q2 did so in the A = 0 bins (the left column of
the histogram). Through a renormalization step, t hese queries have also changed the other bins,
though not necessarily in a query-informed way. The ¢ variable in each bin shows the number

of queries that have purposely updated that bin. We can see that estimates in the ¢ > 0 bins are

50

a bit more accurate compared to those in the ¢ = 0 bins. The only bin that has been updated
twice is (P = 1, A = 0), as it lies at the intersection of both queries; that bin has diverged from
its neighboring, singly-updated bins and is getting closer to its true value. (Bin (P = 1,A = 2),
updated only once, is even more accurate purely by chance.)

Our last query, O3, which accesses (P = 1,A = 0), may be able to leverage its estimation
“for free,” assuming the estimation’s error is within @ w.h.p. Assessing that the error is within
— privately, and without consuming privacy budget if it is — is the purview of the SV mechanism
incorporated in a PMW. The catch is that the SV consumes privacy budget, in copious amounts, if

this test fails. This is what makes vanilla PMW impractical, a problem that we address next.

3.5.3 PMW-Bypass

PMW-Bypass addresses practical inefficiencies of PMW, which we illustrate with simple demon-

stration.

Demo experiment. Using a four-attribute Covid dataset with domain size 128 (so a bit larger
than in our running example), we generate a query pool of over 34K unique queries by taking all
possible combinations of values over the four attributes. From this pool, we sample uniformly
with replacement 35K queries to form a workload; there is therefore some identical repetition of
queries but not much. This workload is not necessarily realistic, but it should be an ideal showcase
for PMW: there are many unique queries relative to the small data domain size (giving the PMW
ample chance to train), and while most queries are unique, they tend to overlap in the data they
touch (giving the PMW ample chance to reuse information from previous queries). We evaluate
the cumulative privacy budget spent as queries are executed, comparing the case where we execute
them through PMW vs. directly with Laplace, with and without an exact-match cache. Fig .3.3
shows the results. As expected for this workload, the PMW works, as it converges after roughly
the first 10K queries and consumes very little budget afterwards. However, before converging,
the PMW consumes enormous budget. In contrast, direct execution through Laplace grows lin-

early, but more slowly compared to PMW’s beginning. The PMW eventually becomes better than

51

—— PMW —¥— Exact-Cache

—>¢— Laplace —l— PMW-Bypass
© 4 I
l@)) 1
S 3
o]
o 2
=
T 1
E O | - |
3 0K 10K 20K 30K
of queries

Fig. 3.3: Demo experiment.

Laplace, but only after ~ 27K queries.

Moreover, if instead of always executing with Laplace, we trivially cached the results in an
exact-match cache for future reuse if the same query reappeared — a rare event in this workload
— then the PMW would never become notably better than this simple baseline! This happens for
a workload that should be ideal for PMW. §5.6 shows that for other workloads, less favorable for
PMW but more realistic, the outcome persists: PMWs underperform even the simplest baselines in
practice.

We propose PMW-Bypass, a re-design for PMWs that releases their power and makes them
very effective. We make multiple changes to PMWs, but the main one involves bypassing the PMW
while it is training (and hence expensive) and instead executing directly with Laplace (which is less
expensive). Importantly, we do this while still updating the histogram with the Laplace results so
that eventually the PMW becomes good enough to switch to it and reap its zero-privacy query
benefits. The PMW-Bypass line in Fig .3.3 shows just how effective this design is in our demo
experiment: PMW-Bypass follows the low, direct-Laplace curve instead the PMW’s up until the
histogram converges, after which it follows the flat shape of PMW’s convergence line. In this
experiment, as well as in others in §5.6, the outcome is the same: our changes make PMWs very
effective. We thus believe that PMW-Bypass should replace PMW in most settings where the latter

is studied, not just in our system’s design.

52

PMW-Bypass

histogram external
Heuristic —==t: update (R3)
Yes q-—————== 1
Q— Is histogram ___Update (R2) 1
eady for Q,a? T . :
histogram-estimated |
result R1 E
yes |

No

Is R1 a-accurate

R1, pay
I nothing O

1
1
1
1
1
w.h.p.? ll ll
i or
pol
fresh DP result R2 | | R2, pay for
(c-accurate wh.p.) i 1 Laplace .
bypass /\ " | and SV
1
branch blfg‘ftd fresh DP result R3 | or
calibrate (a-accurate w.h.p.) I
»| fora | l» R3, pay .o
Laplace mechanism just for
Laplace

Fig. 3.4: PMW-Bypass. New components over vanilla PMW are in blue/bold.
PMW-Bypass. Fig .3.4 shows the functionality of PMW-Bypass, with the main changes shown in
blue and bold. Without our changes, a vanilla PMW works as follows. Given a query Q, PMW
first estimates its result using the histogram (R1) and then uses the SV protocol to test whether it is
a-accurate w.h.p. The test involves comparing R1 to the exact result of the query executed on the
database. If a noisy version of the absolute error between the two is within a threshold comfortably
far from «, then R1 is considered accurate w.h.p. and outputted directly. This is the good case,
because the query need not consume any privacy. The bad case is when the SV test fails. First, the
query must be executed directly through Laplace, giving a result R2, whose release costs privacy.
But beyond that, the SV must be reset, which consumes privacy. In total, if the Laplace execution
costs €, then releasing R2 costs 4 * €! This is what causes the extreme privacy consumption during
the training phase for vanilla PMW, when the SV test mostly fails. Still, in theory, after paying
handsomely for this histogram “miss,” R2 can be used to update the histogram (the arrow denoted
“update (R2)” in Fig .3.4), in hopes that future correlated queries “hit” in the histogram.

PMW-Bypass adds three components to PMW: (1) a heuristic that assesses whether the his-
togram is likely ready to answer Q with the desired accuracy; (2) a bypass branch, taken if the
histogram is deemed not ready and direct query execution with Laplace instead of going through

(and likely failing) the SV test; and (3) an external update procedure that updates the histogram

53

with the bypass branch result. Given Q, PMW-Bypass first consults the heuristic, which only
inspects the histogram, so its use is free. Two cases arise:

Case 1: If the heuristic says the histogram is ready to answer Q with @-accuracy w.h.p., then the
PMW is used, R1 is generated, and the SV is invoked to test R1’s actual accuracy. If the heuristic’s
assessment was correct, then this test will succeed, and hence the free, R1 output branch will be
taken. Of course, no heuristic that lacks access to the raw data can guarantee that R1 will be
accurate enough, so if the heuristic was actually wrong, then the SV test will fail and the expensive
R2 path is taken. Thus, a key design question is whether there exist heuristics good enough to
make PMW-Bypass effective. We discuss heuristic designs below, but the gist is that simple and
easily tunable heuristics work well, enabling the significant privacy budget savings in Fig .3.3.

Case 2: If the heuristic says the histogram is not ready to answer Q with @-accuracy w.h.p., then
the bypass branch is taken and Laplace is invoked directly, giving result R3. Now, PMW-Bypass
must pay for Laplace, but because it bypassed the PMW, it does not risk an expensive SV reset. A
key design question here is whether we can still reuse R3 to update the histogram, even though we
did not, in fact, consult the SV to ensure that the histogram is truly insufficiently trained for Q. We
prove that performing the same kind of update as the PMW would do, from outside the protocol,
would break its theoretical convergence guarantee. Thus, for PMW-Bypass, we design an external
update procedure that can be used to update the histogram with R3 while preserving the PMW’s
worst-case convergence, albeit at slower speed.

Heuristic ISHISTOGRAMREADY. One option to assess if a histogram is ready to answer a query
accurately is to check if it has received at least C updates, for some global threshold C. However,
this approach is often imprecise as it fails to detect histogram regions that might still be untrained.
Thus, we use a separate threshold value per bin, raising the question of how to configure all these
thresholds. To keep configuration easy (goal (G6)), we use an adaptive per-bin threshold. For each
bin, we initialize its threshold C with a value Cy and increment C by an additive step Sp every time
the heuristic errs (i.e., predicts it is ready when it is in fact not ready for that query). While the

threshold is too small, the heuristic gets penalized until it reaches a threshold high enough to avoid

54

mistakes. For queries that span multiple bins, we only penalize the least-updated bins to prevent a
single, inaccurate bin from setting back the histogram from queries using accurate bins only. With
these thresholds, we only configure initial parameters Cy and Sp, which we find experimentally

easy to do (§3.7.2).

Algorithm 2 PMW-Bypass algorithm.

1: Cfg.: PRIVACYACCOUNTANT, HEURISTIC, accuracy params (a, (), histogram convergence params Ir,T,
database DATA with n rows.
: function UPDATE(A, g, 5)
Update estimated values: Vv € X, g(v) « h(v)e**?(V)
Renormalize: Vv € X, h(v) «— g(v)/ X vex &8(w)
return h

: function CALIBRATEBUDGET(«,)
41In(1/B)
na

return

2

3

4

5

6

7

8: Initialize histogram 4 to uniform distribution on X
9: € « CALIBRATEBUDGET(«,)

10: PRIVACYACCOUNTANT.PAY(3 - €) / Pay to initialize first SV
11: while PRIVACYACCOUNTANT.HASBUDGET() do
12 & «— af2+Lapl/en [/ SV reset
13: SV <« NOTCONSUMED

14: while SV == NOTCONSUMED do
15: Receive next query g

16 if HEURISTIC.ISHISTOGRAMREADY (4, g, @, 8) then

17 // Regular PMW branch:

18 if |g(DATA) — g(h)| + Lap 1/en < & then // SV test
19 Output R1 = g(h)

20 else

21 PRIVACYACCOUNTANT.PAY (4 x €) — R2, pay for
22 Output R2 = g(DATA) + Lap1/en Laplace, SV

23: /I Update histogram (R2):
24 s {lr ?f R2 > q(h)
—Ir ifR2 < q(h)

25: h « UPDATE(h, g, 5)
26: SV « CONSUMED // force SV reset
27: HEURISTIC.PENALIZE(qg, h)
28: else
29: // Bypass branch:
30: PRIVACYACCOUNTANT.PAY (€) — R3, pay for
31: Output R3 = g(DATA) + Lap 1/en Laplace
32: // External update of histogram (R3):

Ir ifR3>gq(h)+71a
33: se—<-Ilr ifR3<q(h)-T1a

0 otherwise // no updates if we’re not confident!
34. h < UPDATE(h, g, 5)

External updates. While we want to bypass the PMW when the histogram is not “ready” for
a query, we still want to update the histogram with the result from the Laplace execution (R3);

otherwise, the histogram will never get trained. That is the purpose of our external updates (lines

55

33-34 in Alg. 2). They follow a similar structure as a regular PMW update (lines 24-25 in Alg. 2),
with a key difference. In vanilla PMW, the histogram is updated with the result R2 from Laplace
only when the SV test fails. In that case, PMW updates the relevant bins in one direction or another,
depending on the sign of the error R2 — g(h). For example, if the histogram is underestimating the
true answer, then R2 will likely be higher than the histogram-based result, so we should increase
the value of the bins (case R2 > g(h) of line 24 in Alg. 2).

In PMW-Bypass, external updates are performed not just when the authoritative SV test finds

the histogram estimation inaccurate, but also when our heuristic predicts it to be inaccurate even
though it may actually be accurate. In the latter case, performing external updates in the same
way as PMW updates would add bias into the histogram and forfeit its convergence guarantee.
To prevent this, in PMW-Bypass, external updates are executed only when we are quite confident,
based on the direct-Laplace result R3, that the histogram overestimates or underestimates the true
result. Line 33 shows the change: the term T« is a safety margin that we add to the comparison
between the histogram’s estimation and R3, to be confident that the estimation is wrong and the
update warranted. This lets us prove worst-case convergence akin to PMW. Finally, like regular
PMW updates, external updates reuse the already DP result R3, hence they do not consume any
additional privacy budget beyond what was already consumed to generate R3.
Learning rate. In addition to the bypass option, we make another key change to PMW design for
practicality. When updating a bin, we increase or decrease the bin’s value based on a learning rate
parameter, [r, which determines the size of the update step taken (line 3 in Alg. 2). Prior PMW
works fix learning rates that minimize theoretical convergence time, typically a/8 [85]. However,
our experiments show that larger values of Ir can lead to much faster convergence, as dozens of
updates may be needed to move a bin from its uniform prior to an accurate estimation. However,
increasing /r beyond a certain point can impede convergence, as the updates become too coarse.
Taking cue from deep learning, PMW-Bypass uses a scheduler to adjust /r over time. We start with
a high /r and progressively reduce it as the histogram converges.

Guarantees. (G1) Privacy: PMW-Bypass preserves €G-DP across the queries it executes. (G2)

56

h=39.5 |h=107.3 |h=70.1
C=1 C=0 C=0.5

h=14.6 |h=39.5 |h=56.4
C=2 C=1 C=1.25

[1.4]

[1.2]
h=17.8 |h=48.4 |n=48.4 |n=315
c=t [c=0 [c=0 |c-0s

h=6.6 |n=17.8 |[n=17.8 |h=11.6
c=2 |[c=1 |c=1 |c=15

[1,1] [2.2] [3,3] [4,4] [5,5]
h=8 |n=21.7 |h=21.7 |[n=21.7 | [h=9.8 [nh=26.7 [n=26.7 [h=9.8 | [n=11.8 [n=322 [n=11.8 [n=11.8 | [h=0.8 [h=26.7 [n=08 |h=0.8 | | | 1 & !
c=1 |[c=0 [c=0 |c=0 c=1 |c=0 |c=1 |c=1 c=1 |[c=0 [c=1 [c=1 P '
h=2.9[n=8 |h=8 |h=8 h=4.4 |h=11.8 [h=11.8 |h=4.4 | [h=36 |h=9.8 |h=26.7 |h=3.6 HER
c=2 |c=1 |c=1 |c=1 c=2 |c=t |c=1 |[c=2 c=2 |c=1 |[c=2 |c=2 : .
| | | | l\
[week 1 | week 2 | week 3 | week 4 | future Y
I T T T

partitioned data stream (time —)

Fig. 3.5: Example of tree-structured histograms.

Accuracy: PMW-Bypass is a-accurate with 1 — 8 probability for each query. This property stems
from how we calibrate Laplace budget € to @ and . This is function CALIBRATEBUDGET in

Alg. 2 (lines 6-7). (G3) Worst-case convergence: 1f Ir/ja < v < 1/2, then w.h.p. PMW-Bypass

In |X|

needs to perform at most 727575

updates. PMW-Bypass’s worst-case convergence is thus similar

to PMW?’s, but roughly 1/27 times slower. §3.7.2 confirms this empirically.

3.5.4 Tree-Structured PMW-Bypass

We now switch to the partitioned-database use cases, focusing on time-based partitions, as
in timeseries databases, whether static or dynamic. Rather than accessing the entire database,
analysts tend to query specific time windows, such as requesting the Covid positivity rate over
the past week, or the fraction of minors diagnosed with Covid in the two weeks following school
reopening. This allows the opportunity to leverage DP’s parallel composition: the database is
partitioned by time (say a week’s data goes in one partition), and privacy budget is consumed at
the partition level. Queries can run at finer or coarser granularity, but they will consume privacy
against the partition(s) containing the requested data. With this approach, a system can answer
more queries under a fixed global (€g, dg)-DP guarantee compared to not partitioning [8, 9, 83,
62]. We implement support for partitioning and parallel composition in Turbo through a new

caching object called a tree-structured PMW-Bypass.

57

Example. Fig .3.5 shows an extension of the running example in §4.3.1, with the database parti-
tioned by week. Denote n; the size of each partition. A new query, Q, asks for the positivity rate
over the past three weeks. How should we structure the histograms we maintain to best answer
this query? One option would be to maintain one histogram per partition (i.e., just the leaves in
the figure). To resolve Q, we query the histograms for weeks 2, 3, 4. Assume the query results in
an update. Then, we need to update histograms, computing the answer with DP within our « error
tolerance. Updating histograms for weeks 2, 3, and 4 requires querying the result for each of them
with parallel composition. Given that Laplace(1/ne) has standard deviation V2/ne, for week 4 for
instance, we need noise scaled to 1/n4e. Thus, we consume a fairly large € for an accurate query
to compensate for the smaller n4. Another option would be to use one histogram per range (i.e.
set of contiguous partitions), but that involves maintaining a large state that grows quadratically in
the number of partitions.

Instead, our approach is to maintain a binary-tree-structured set of histograms, as shown in
Fig .3.5. For each partition, but also for a binary tree growing from the partitions, we maintain
a separate histogram. To resolve Q, we split the query into two sub-queries, one running on the
histogram for week 2 ([2,2]) and the other running on the histogram for the range week 3 to week
4 ([3,4]). That last sub-query would then run on a larger dataset of size n3 + n4, requiring a smaller
budget consumption to reach the target accuracy.

Design. Fig . 3.6 shows our design. Given a query Q, we split it into sub-queries based on the
histogram tree, applying the min-cuts algorithm to find the smallest set of nodes in the tree that
covers the requested partitions. In our example, this gives two sub-queries, Q” and Q”, running on
histograms [2,2] and [3,4], respectively. For each sub-query, we use our heuristic to decide whether
to use the histogram or invoke Laplace directly. If both histograms are “ready,” we compute their
estimations and combine them into one result, which we test with an SV against an accuracy
goal. In our example, there are only two sub-queries, but in general there can be more, some
of which will use Laplace while others use histograms. We adjust the SV’s accuracy target to an

(asy, Bsy) calibrated to the aggregation that we will need to do among the results of these different

58

|a

split query (min-cuts in histogram tree)

‘ Q Q
pay - pay
N agalnst
?v%?—zllr(]sZt jgl combine histogram estimations I:jgl weeks
R3 R3”
Yes No
Is R1 ag,-accurate pay
.......................... ...against
............................
...... o4
R2’ / R2”

combine Laplace with histogram results

Q result (a-accurate w.h.p.)

Fig. 3.6: Tree-structured PMW-Bypass.

mechanisms. We pay for any Laplace’s and SV resets against the queried data partitions and finally
combine Laplace results with histogram-based results. Each subquery updates the corresponding
histograms of the tree and increments ¢ for updated nodes.

Guarantees. (G1) Privacy and (G2) accuracy are unchanged. (G3) Worst-case convergence: For

T partitions, if Ir/a < T < 1/2, then w.h.p. we perform at most ZT([;O(%Q;%“ X updates.

3.5.5 Histogram Warm-Start

An opportunity exists in streams to warm-start histograms from previously trained ones to
converge faster. Prior work on PMW initialization [86] only justifies using a public dataset close
to the private dataset to learn a more informed initial value for histogram bins than a uniform prior.
We prove that warm-starting a histogram by copying an entire, trained histogram preserves the
worst-case convergence. In Turbo, we use two procedures: for new leaf histograms, we copy the
previous partition’s leaf node; for non-leaf histograms, we take the average of children histograms.

We also initialize the per-bin thresholds and update counters of each node.

59

Data Analyst
(multiple, untrusted)

Tumult Analytics API

Turbo API

1. Implemented by turbo-lib:

turbo.run(TurboQuery, PrivacyAccountant,
QueryExecutor) — Any;

2. To be implemented by the user of Turbo

Tumult Analytics turbo-lib
(Turbo) (e.g., turbo-tumult, turbo-sql):
\M‘ turbo-tumult
Admin Session Hooks for _ T abstract class TurboQuery { o
(one, trusted) QueryExprCompiler < abstract getAggregationType() — string;
Ak QueryExpr- Override § abstract getDataViewI[l)() — intl;
w Compiler Session.evaluate(.) to = abstract getDataViewSize() — int;
! query Turbo abstract getFilterClause() — map;
evaluate(.) New type of 4 }
Measurement to S —
access true result W abstract class PrivacyAccountant {
stores all state for abstract consume(PrivacyBudget)
Tumult Core API caching objects and raises InsufficientPrivacyBudgetException;

sparse vectors (SV))

Tumult Core abstract class QueryExecutor {

abstract executeNPQuery(TurboQuery) — Any
abstract executeDPQuery(TurboQuery,
PrivacyBudget,
true_result: Any=None) — Any

‘ Measurement ‘ ‘ PrivacyAccountant ‘

}
[—
Static
Database/Dataset

(a) Architecture Turbo-Tumult integration (b) Turbo API

Fig. 3.7: (a) Turbo integration into Tumult. (b) Turbo API.

Guarantees. (G1) Privacy and (G2) accuracy guarantees are unchanged. (G3) Worst-case con-

vergence: If there exists 4 > 1 such that the initial histogram A in Alg. 2 satisfies Vx € X, ho(x) >

1

X then we show that each PMW-Bypass converges, albeit at a slower pace (Thm. ??). The same

properties hold for the tree.

3.6 Prototype Implementations

We prototype Turbo in three components that we release open-source: (1) turbo-lib, a library
that contains Turbo-specific functionality, notably the caching objects and functional components
in the Turbo architecture (Fig. 4.3); (2) turbo-tumult, a library that connects turbo-lib with Tumult
Analytics, to add caching functionality into that existing DP system; and (3) turbo-sql, a basic
standalone library to run a select subset of DP SQL queries through turbo-lib directly against a
traditional, non-DP database, such as TimescaleDB or PostgreSQL. The reason for both (2) and
(3) 1s that Tumult provides a more complete database query engine, supporting a wide variety of
Spark-SQL-like queries while having significant limitations with respect to parallel composition

on partitioned databases. Our integration with Tumult (2) shows that Turbo can be integrated with

60

a real, existing DP system, while our standalone querying library (3) can let us experiment with
both non-partitioned and partitioned databases, in both static- and streaming-DB settings. We use
a version of (3) (released through the SOSP’23 artifact) throughout our evaluation, but describe
here predominantly our integration with Tumult, which can serve as a blueprint for integration
with other existing DP systems in the future. Finally, we separately release the artifact that we
used in our evaluation and which was evaluated by the SOSP’23 artifact evaluation committee. All
are available from the repository: https://github.com/columbia/turbo.

Fig. 3.7(a) shows the architecture of our Turbo-Tumult integration. The grey boxes are Turbo-
specific while the clear boxes are unchanged Tumult components.
Tumult overview. Without Turbo, Tumult functions as follows. It consists of two main com-
ponents: (1) Tumult Core, a library that implements primitive DP mechanisms and privacy ac-
counting; and (2) Tumult Analytics, a layer on top of Tumult Core that exports a higher-level,
Spark-SQL-like query interface on top of one or more static datasets or databases. Tumult Core
exports a low-level API consisting of a privacy accountant and a measurement abstraction, which is
the Tumult terminology for a DP computation. It implements the necessary methods to “evaluate”
a measurement on top of a dataset and deduct its privacy budget against the accountant. Tumult
Analytics implements two main abstractions: (1) a session, which represents the context against
which Tumult will enforce a global privacy budget across all queries issued against this session
and (2) a Spark-SQL-like interface for analysts to construct queries that consists of multiple trans-
formations chained one after another (such as filters, projections, joins, etc.) against one or more
datasets, followed by a single aggregate function (such as an average, count, sum, median, per-
centiles, stdev, etc.), with potential for splitting and grouping the results by one or more attributes.
Compared to other DP SQL databases, it is our impression that Tumult supports a fairly wide range
of SQL that can be handled with DP.

For the purposes of this paper, we will assume that an administrator creates a session upfront,
specifying a global privacy budget to be enforced and hosts this session as a service to guard an-

alysts’ accesses to a sensitive dataset (or datasets) underneath. Analysts, which can be many and

61

https://github.com/columbia/turbo

are untrusted, send their query expressions for execution against the session. The session is then
responsible for executing each query by first compiling it into a measurement and then evaluating
it through the Tumult Core, which will deduct the necessary privacy budget. While the measure-
ment abstraction is a quite general representation of a DP computation, Tumult Core and Analytics
assume a Spark DataFrame-based API for interacting with the dataset(s) underneath. Thus, mea-
surements compiled through Tumult Analytics, will be Spark DataFrame queries — to be executed
through Spark — in which Tumult Analytics transparently includes an additional operation that adds
an appropriately scaled amount of noise to the result of the aggregation. A Tumult measurement
encapsulates this compiled Spark DataFrame query, along with information regarding the privacy
budget it is programmed to expend upon its execution. Tumult Analytics hands over this mea-
surement for Tumult Core, which executes the DataFrame query through Spark and deducts the
measurement’s reported privacy consumption through its privacy accountant.

Turbo-Tumult. The preceding describes Tumult and its main abstractions (relevant for this paper)
without Turbo. Tumult itself has no caching capabilities, so our integration aims to add Turbo
as a caching layer in Tumult. The integration consists of two components, denoted in grey in
Fig. 3.7(a). First is turbo-lib, which contains the core Turbo functionality we described in this
paper. Turbo-lib exposes an API, Turbo API, consisting of the functions Turbo exports to and
requires from any user of Turbo, such as turbo-tumult and turbo-sql. Second is turbo-tumult, a
small library that incorporates Turbo into Tumult by invoking and implementing different parts of
the Turbo APIL.

Turbo-tumult takes a light-touch approach to incorporating Turbo into Tumult, which ensures
that our system is easily adoptable. It manifests in two ways. First, we only extend, but do not
modify, certain classes within Tumult Analytics and implement new types of measurements to
extend, but not change, Tumult Core functionality. Specifically, turbo-tumult provides one type
of externally visible abstraction: a new type of session, called TurboSession, which overrides the
original’s query evaluation function to: (1) incorporate a set of hooks into the query compiler such

that certain information necessary for Turbo is extracted from the query, such as the dataset ID,

62

the type of aggregate function, and the filtering conditions; and (2) if the query can be handled by
Turbo, TurboSession passes it through turbo-lib instead of executing it directly on Tumult Core.
Turbo-lib then checks its own caching objects for an answer, but resorts to Tumult Core — which
it accesses back through the Turbo API, discussed shortly — for execution of the query and for
privacy budget deduction in the Tumult Core accountant.

Second, we take a fail-to-Tumult approach for all queries. Turbo supports a small subset of all
queries supported by Tumult: e.g., we do not support joins, medians, percentiles, and a number
of transformation functions allowed in Tumult. Moreover, Turbo aims to control accuracy of the
queries, and presently that accuracy must be specified upfront, when the cache (e.g., through Tur-
boSession) service is created. Yet, analysts may wish to vary their accuracy targets per query, and
in some cases may wish to specify privacy budgets rather than accuracies for a query. Finally, we
support only certain types of DP mechanisms and definitions in our prototype, specifically those
relying on Laplace, whereas Tumult supports more. Our approach to address these limitations
without restricting analysts’ interaction with Tumult is to consult the Turbo caches only when the
queries exhibit properties we can handle, while resorting to Tumult-based execution when they do
not. As a result, an analyst interacting with a TurboSession will not be restricted in terms of their
queries or accuracy demands compared to interacting with a vanilla Tumult session, but Turbo will
only conserve privacy budget for those queries that it can handle.

The preceding two approaches for light-touch integration of Turbo into Tumult ensure that our
system can be easily adopted.

Turbo API. The Turbo API is the central component for integrating Turbo into real DP systems.
Shown in Fig. 3.7(b), it consists of two components: functionality that Turbo-lib implements and
users invoke to take advantage of its caches (specifically, the run function) and (2) several classes
that users implement to provide Turbo with services it needs from the DP system with which it is
integrated. Turbo needs three types of services from the DP system. First, it needs the ability to ex-
tract certain information about the query, such as: the type of aggregation and filter chain; a unique

ID for the dataset (or partition or view over the dataset or partition) on which the query is run, as

63

Turbo’s state is tied to a dataset/partition/view; and the number of records in that dataset (recall
that our design assumes that the dataset size is public information). This information is supplied
by implementing the TurboQuery interface, which wraps the original, DP-system-specific query
structure into one that supplies the necessary information. For example, our turbo-tumult library
wraps query expressions into a TurboQuery with this enhanced functionality.

Second, Turbo is not a query engine, so it needs the ability to execute a query through the
original DP system. This is provided by implementing the QueryExecutor interface. A peculiarity
of Turbo in this context, which was easy to implement in Tumult but which we anticipate may be
non-trivial to implement in other DP systems, is that Turbo needs not only the ability to execute the
query in a DP way, but also the ability to execute it without DP. Recall that Turbo’s SV checks com-
pares the histogram-based result to the frue result of invoking the same query on the data without
DP. Turbo thus needs access to this true result, a piece of functionality that typically DP databases
do not offer publicly, for good, safety-related reasons. Still, in Tumult, due to its highly modular
structure, we find that this functionality can be implemented without having to modify its code
base. Specifically, turbo-tumult implements QueryExecutor.executeNPQuery (.) by defin-
ing a special type of measurement that does not, in fact, incorporate randomness into its aggregate
and which reports as zero the privacy budget being used. This measurement is executed against the
Tumult Core and returns the true result of the query. In turbo-lib, we take care to only leverage this
sensitive result internally during the SV check in a DP way. Moreover, to optimize query execution
in the case that the SV fails, turbo-tumult implements QueryExecutor.executeDPQuery (.)
with the optional ability to reuse a non-private, true result previously obtained for the SV check.
This is achieved by implementing another type of measurement, which, when executed by Tu-
mult Core, will only apply the randomness operation to the given true_result and report the
appropriate amount of privacy budget to be deducted by the Tumult Core’s accountant.

Third, Turbo needs the ability to deduct the privacy budget consumed by the SV reset. This is
supplied by implementing the Turbo PrivacyAccountant interface, with one function: consume.

In turbo-tumult, we implement this interface by defining a third type of measurement, which does

64

not perform any computation but just consumes privacy. We believe that DP systems should export
this kind of functionality to more naturally support extensions.

Turbo-lib. Turbo-lib implements the Turbo design described in this paper, with some notable
restrictions. First, we do not yet support partitioning in the turbo-lib implementation, though that
support exists in our SOSP artifact release, as used in our evaluation. Second, our implementation
only supports count queries presently, although our histograms and exact-match caches can be
extended to support other types of linear aggregations, such as sums, averages, standard deviation.
Third, we use Redis to store all state in Turbo, including the exact-match caches, PMW histograms,
and SV state. Redis can be replaced with a persistent, consistent and durable storage service for
production use.

Turbo-sql. In addition to incorporating Turbo into the Tumult Analytics engine, we are also cre-
ating a basic, standalone, SQL DP database ourselves, which only supports the types of queries
that Turbo supports, but which can support streaming and partitioning. At the time of this writ-
ing, the most mature version of this library can be found in our SOSP artifact release, but we are
working on a more modular version of this library that presently lacks support for streaming and
partitioning. The full-featured version of this library, which is what we use in our evaluation, re-
ceives simple linear SQL queries as strings, parses them, implements the Turbo API to first check
for answers to them in the Turbo cache, and execute the queries — DP through Laplace or non-DP

(as needed by Turbo) — using TimescaleDB, a streaming version of PostgreSQL.

3.7 Evaluation

We evaluate Turbo using the SOSP artifact version of our own, dedicated DP SQL database
with Turbo support incorporated in it. We use two public timeseries datasets — Covid and CitiBike
— to evaluate Turbo in the three use cases from §3.4.2. Each use case lets us do system-wide
evaluation, answering the critical question: Does Turbo significantly improve privacy budget con-
sumption compared to reasonable baselines for each use case? This corresponds to evaluating our

§3.4.1 design goals (G5) and (G6).

65

In addition, each setting lets us evaluate a different set of caching objects and mechanisms:

(1) Non-partitioned database: We configure Turbo with a single PMW-Bypass and Exact-Cache,
letting us evaluate the PMW-Bypass object, including its empirical convergence and the impact of
its heuristic and learning rate parameters.

(2) Partitioned static database: We partition the datasets by time (one partition per week) and
configure Turbo with the tree-structured PMW-Bypass and Exact-Cache. This lets us evaluate the
tree-structured cache.

(3) Partitioned streaming database: We configure Turbo with the tree-structured PMW-Bypass,
Exact-Cache, and histogram warm-up, letting us evaluate warm-up.

As highlighting, our results show that PMW-Bypass unleashes the power of PMW, enhancing
privacy budget consumption for linear queries well beyond the conventional approach of using
an exact-match cache (goal (GS)). Moreover, Turbo as a whole seamlessly applies to multiple
settings, with its novel tree-structured PMW-Bypass structure scoring significant benefit for time-
series workloads where database can be partitioned to leverage parallel composition (goal (G6)).
Configuration of our objects and mechanisms is straightforward (goal (G7)), and we tune them
based on empirical convergence rather than theoretical convergence, boosting their practical ef-
fectiveness (goal (G4)). Finally, we provide a basic runtime and memory evaluation, which shows
that while Turbo performs reasonably for our datasets, further research is needed for larger-domain

data.

3.7.1 Methodology

For each dataset, we create query workloads by (1) generating a pool of linear queries and (2)
sampling queries from this pool based on a Zipfian distribution. Covid uses a completely synthetic
query pool. CitiBike uses a pool based on real-user queries from prior CitiBike analyses. We use
the former as a microbenchmark, the latter as a macrobenchmark.

Covid. Dataset: We take a California dataset of Covid-19 tests from 2020 that provides daily ag-

gregate information of the number of Covid tests and their positivity rates for various demographic

66

—— PMW —¥— Exact-Cache —@— Turbo

4+ 4
‘g ©
g 3 g 3¢
> =}
o] o]
o 27 o 27 3
= =
g g 4 /
% I \. 1L 1L 1L 1L % 0 I \. I I L L

0K 10K 20K 30K 40K 50K 60K 70K OK 10K 20K 30K 40K 50K 60K 70K

of queries # of queries
(a) Turbo on Covid, kzipr = 0 (b) Turbo on Covid, kjpr = 1

—— PMW
—l— PMW-Bypass

1.2 ; . ; .
| |

8
Q 25k
S
*g § 20k
g 087 S 15k
g 0.6 °
£ 04 £ 10k
E 0.2 (PMW line suppressed for visibility) 1 § 5k
2 0 ‘ ‘ ‘ ‘ g 0 ‘ |
oK 15K 30K 45K 60K 5 0.001 0.01 0.1 1
of queries i learning rate Ir (logscale)
(c) Turbo on CitiBike, kzipr = 0 (d) Empirical convergence

Fig. 3.8: Non-partitioned database: (a-c) system-wide evaluation (Question 1); (d) empirical
convergence for PMW-Bypass vs. PMW (Question 2). (a-c) Turbo, instantiated with one PMW-
Bypass and Exact-Cache, significantly improves budget consumption compared to both baselines.
(d) Uses Covid kjpr = 1. PMW-Bypass has similar empirical convergence to PMW, and both
converge faster with much larger /r than anticipated by worst-case convergence.

groups defined by age X gender X ethnicity. We combine this data with US Census data to generate
a synthetic dataset that contains n = 50,426, 600 per-person test records, each with the date and
four attributes: positivity, age, gender, and ethnicity. These attributes have domain sizes of 2, 4,
2 and 8, respectively, so the dataset domain size is N = 128. The dataset spans 50 weeks, so in
partitioned use cases we have up to 50 partitions. Query pool: We create a synthetic and rich pool
of correlated queries comprising all possible count queries that can be posed on Covid. This gives

34,425 unique queries, plenty for us to microbenchmark Turbo.

67

CitiBike. Dataset: We take a dataset of NYC bike rentals from 2018-2019, which includes infor-
mation about individual rides, such as start/end date, start/end geo-location, and renter’s gender and
age. The original data is too granular with 4,000 geo-locations and 100 ages, making it impractical
for PMWs. Since all the real-user analyses we found consider the data at coarser granularity (e.g.
broader locations and age brackets), we group geo-locations into ten neighborhoods and ages into
four brackets. This yields a dataset with n = 21,096, 261 records, domain size N = 604, 800, and
spanning 50 weeks. Query pool: We collect a set of pre-existing CitiBike analyses created by var-
ious individuals and made available on Public Tableau [87]. An example is here [88]. We extract
30 distinct queries, most containing ‘GROUP BY’ statements that we decompose into multiple
primitive queries that can interact with Turbo histograms. This gives us a pool of 2,485 queries,
which is smaller than Covid’s but more realistic and suitable as a macrobenchmark.

Workload generation. As is customary in caching literature [89, 90, 91], we use a Zipfian dis-
tribution to control the skewness of query distribution, which affects hit rates in the exact-match
cache. From a pool of Q queries, a query of type x € [1, Q] is sampled with probability oc x =%zt
where kipr > 0 is the parameter that controls skewness. We evaluate with several k¢ values but
report only results for k,ipr = O (uniform) and k,ipr = 1 (skewed) for Covid. For CitiBike, we
evaluate only for k,ipr = O to avoid reducing the small query pool further with skewed sampling.
For streaming, queries arrive online with arrival times following a Poisson process; they request a
window of certain size over recent timestamps.

Metrics. o Average cumulative budget: the average budget consumed across all partitions. e
Systems metrics: traditional runtime, process RAM. e Empirical convergence: We periodically
evaluate the quality of Turbo’s histogram by running a validation workload sampled from the same
query pool. We measure the accuracy of the histogram as the fraction of queries that are answered
with error > a/2 by the histogram. We define empirical convergence as the number of histogram
updates necessary to reach 90% validation accuracy.

Default parameters. Unless stated otherwise, we use the following parameter values: privacy

(e¢ = 10,66 = 0); accuracy (@ = 0.05,8 = 0.001); for Covid: {learning rate [r starts from

68

—X— Exact-Cache (for baseline)

—¥— Exact-Cache (for baseline) —A— PMW-Bypass Ir=0.00625 (too timid)
—A— PMW-Bypass Cy=1K (too aggressive —&— PMW-Bypass Ir=0.0125

—l— PMW-Bypass Cy=100 —l— PMW-Bypass Ir=0.025

—A— PMW-Bypass Cy=10 PMW-Bypass 0.05

—V¥— PMW-Bypass Ir=0.125 (too aggressi\

PMW-Bypass Cp=1 (too optimistic)

2 f % 2
3 S 15|
§ 157 g)
o) I
z 1 z
] K
=) >
E 05 ¢ E 057
o A —— o
2 0 : : : 2 o : . .
© OK 20K 40K 60K © 0K 20K 40K 60K

of queries # of queries
(a) Impact of heuristic Cy (Sg = 1) (b) Impact of learning rate Ir

Fig. 3.9: Impact of parameters (Question 3). Uses Covid k,jpr = 1. Being too optimistic or
pessimistic about the histogram’s state (a), or too aggressive or timid in learning from each update
(b), gives poor performance.

0.25 and decays to 0.025, heuristic (Cy = 100, So = 5), external updates 7 = 0.05}; for CitiBike:

{learning rate Ir = 0.5, heuristic (Cy = 5, So = 1), external updates 7 = 0.01}.

3.7.2 Use Case (1): Non-partitioned Database

System-wide evaluation. Question 1: In a non-partitioned database, does Turbo significantly im-
prove privacy budget consumption compared to vanilla PMW and a simple Exact-Cache ? Fig. 3.8a-
3.8c show the cumulative privacy budget used by three workloads as they progress to 70K queries.
Two workloads correspond to Covid, one uniform (k,i,r = 0) and one skewed (k,ipr = 1), and
one uniform workload for CitiBike. Turbo surpasses both baselines across all three workloads.
The improvement is enormous when compared to vanilla PMW: 15.9 — 37.4x! PMW’s conver-
gence is rapid but consumes lots of privacy; Turbo uses little privacy during training and then
executes queries for free. Compared to just an Exact-Cache, the improvement is less dramatic
but still significant. The greatest improvement over Exact-Cache is seen in the uniform Covid
workload: 16.7x (Fig. 3.8a). Here, queries are relatively unique, resulting in low hit rate for the

Exact-Cache. That hit rate is higher for the skewed workload (Fig. 3.8b), leaving less room for

69

—X¥— Exact-Cache —&+— Tree Exact-Cache —@— Turbo

s 1r s 1 ® K
(=2} o)) D 16
§ 0.8 | § 0.8 §
© 0.6 © 0.6 v o 12
= = =
T 047 T 04 T 08
> =} 3
E 02¢ E 02 E 04
o o o
o © s 0 o O
s OK 100K 200K 300K s OK 100K 200K 300K s 0K 100K 200K 300K
of queries # of queries # of queries
(a) Turbo on Covid, kipr = 0 (b) Turbo on Covid, kipr = 1 (¢) Turbo on CitiBike, kzipr = 0

Fig. 3.10: Partitioned static database: system-wide evaluation (Question 5). Turbo is instan-
tiated with tree-structured PMW-Bypass and Exact-Cache. Turbo significantly improves budget
consumption compared to both a single Exact-Cache and a tree-structured set of Exact-Caches.

improvement for Turbo: 9.7X better than Exact-Cache. For CitiBike (Fig. 3.8c), the query pool
is much smaller (< 2.5K queries), resulting in many exact repetitions in a large workload, even if
uniform. Nevertheless, Turbo gives a 1.7x improvement over Exact-Cache. And in this workload,
Turbo outperforms PMW by 37.4x (omitted from figure for visualization reasons). Overall, then,
Turbo significantly reduces privacy budget consumption in non-partitioned databases, achieving
1.7 — 15.9x improvement over the best baseline for each workload (goal (GS)).

PMW-Bypass evaluation. Using Covid k,pr = 1, we microbenchmark PMW-Bypass to un-
derstand the behavior of this key Turbo component. Question 2: Does PMW-Bypass converge
similarly to PMW in practice? Through theoretical analysis, we have shown that PMW-Bypass
achieves similar worst-case convergence to PMW, albeit at slower speed (§3.5.3). Fig. 3.8d com-
pares the empirical convergence (defined in §4.7.1) of PMW-Bypass vs. PMW, as a function of
the learning rate /r. We make three observations, two of which agree with theory, and the last
differs. First, the results confirm the theory that (1) PMW-Bypass and PMW converge similarly,
but (2) for “good” values of /r, vanilla PMW converges slightly faster: e.g., for [r = 0.025, PMW-
Bypass converges after 1853 updates, while PMW after 944. Second, as theory suggests, very
large values of Ir (e.g., [r > 0.4) impede convergence in practice. Third, although theoretically,
Ir = a/8 = 0.00625 is optimal for worst-case convergence, and it is commonly hard-coded in
PMW protocols [85], we find that empirically, larger values of /r (e.g., [r = 0.05, which is 8X

larger) give much faster convergence. This is true for both PMW and PMW-Bypass, and across all

70

our workloads. This justifies the need to adapt and tune mechanisms based on not only theoretical
but also empirical behavior (goal (G4)).

Question 3: How do PMW-Bypass heuristic, learning rate, and external update parameters
impact consumed budget? We experimented with all parameters and found that the two most im-
pactful are (a) Cy, the initial threshold for the number of updates each bin involved in a query must
have received to use the histogram, and (b) the learning rate. Fig. 3.9 shows their effects. Heuristic
Cy (Fig. 3.9a): Higher Cy results in a more pessimistic assessment of histogram readiness. If it’s
too pessimistic (Cy = 1K), PMW is never used, so we follow a direct Laplace. If it’s too optimistic
(Co = 1), errors occur too often, and the histogram’s training overpays. Cp = 100 is a good value
for this workload. Learning rate Ir (Fig. 3.9b): Higher Ir leads to more aggressive learning from
each update. Both too aggressive (/r = 0.125) and too timid (/r = 0.00625) learning slow down
convergence. Good values hover around /r = 0.025. Overall, only a few parameters affect perfor-
mance, and even for those, performance is relatively stable around good values, making them easy
to tune (goal (G7)).

Question 4: How does Turbo’s adaptive, per-bin heuristic compare to alternatives? We ex-
perimented with three alternative ISHISTOGRAMREADY designs that forgo either (1) the per-bin
granular thresholds, or (2) the adaptivity property, or (3) both. We make two observations. First,
the coarse-grained heuristics consume more privacy budget than the fine-grained heuristics, espe-
cially on more skewed workloads, such as k,,r = 1.5, which have less diversity so they tend to
train histogram bins less uniformly. For example, a coarse-grained heuristic that uses a histogram-
level count of the number of updates, with a threshold Cy to determine when the histogram is
ready to receive any query, consumes at best 0.7 global privacy budget on a Covid workload with
kipt = 1.5; this is achieved when Cy is optimally configured to a value of 2070 updates. In con-
trast, a fine-grained heuristic, which uses a per-bin update count with a threshold Cy for each bin,
consumes at best 0.44 global privacy budget, achieved when Cj is set to 160 updates. Second,
the adaptive heuristics consume similar budget as the optimally-configured, non-adaptive ones,

but the former are much easier to configure, as they offer stable performance around wide ranges

71

of the Cy parameter. For example, when Cy varies in range [20,200], the non-adaptive per-bin
heuristic’s budget consumption varies in range [0.44,0.81] for the k,ipr = 1.5 workload, and in
range [0.31,0.76] for k,ipr = 1 workload. In contrast, Turbo’s adaptive, per-bin heuristic’s bud-
get consumption varies in much tighter ranges under the same circumstances: [0.44,0.52] and
[0.28,0.48] for the k,ipr = 1.5 and k¢ = 1 workload, respectively. Thus, Turbo’s heuristic is the

best of these options.

3.7.3 Use Case (2): Partitioned Static Database

System-wide evaluation. Question 5: In a partitioned static database, does Turbo significantly
improve privacy budget consumption, compared to a single Exact-Cache and a tree-structured
set of Exact-Caches? We divide each database into 50 partitions and select a random contiguous
window of 1 to 50 partitions for each query. We adjust the (Cop, So) heuristic parameters to (50, 1)
for Covid and (1, 1) for CitiBike. Fig. 3.10a-3.10c show the average budget consumed per partition
up to 300K queries. Compared to the static case, Turbo can now support more queries under
€c = 10 thanks to parallel composition: each query only consumes privacy from the accessed
partitions. Turbo further divides privacy budget consumption by 1.9 — 4.7x compared to the best-
performing baseline for each workload, demonstrating its effectiveness as a caching strategy for
the static partitioned use case.

Tree structure evaluation. Question 6: When does the tree structure for histograms outperform a
flat structure that maintains one histogram per partition? We vary the average size of the windows
requested by queries from 1 to 50 partitions based on a Gaussian distribution with std-dev 5. We
find the tree structure for histograms is beneficial when queries tend to request more partitions (25
partitions or more). Because the tree structure maintains more histograms than the flat structure,
it fragments the query workload more, resulting in fewer histogram updates per histogram and
more use of direct-Laplace. The tree’s advantage in combining fewer results makes up for this
privacy overhead caused by histogram maintenance when queries tend to request larger windows of

partitions, while the linear structure is more justified when queries tend to request smaller windows

72

—X¥— Exact-Cache —E&+— Tree Exact-Cache —©— Turbo without Warm-start —@— Turbo with Warm-start

1

1
‘g E

2 08¢ 208}

a a

o 06 o 06

2 =

g 04t 2 04

= =

s 2] M £ 027

> >

o (&]

o) 0 : . S 0 I .

3 OK 100K 200K 300K 3 0K 100K 200K 300K

of queries # of queries
(@) Turbo on Covid, k;ipr = 0 (b) Turbo on Covid, kipr = 1

5 2 ' ' === Exact-Cache hit

216 . EzZz3 PMW-Bypass R1 output path
3 mmms PMW-Bypass R2 output path
o 127] == PMW-Bypass R3 output path
Z 08| £ 200 | ‘ ‘ |
2 04 2 150 |

3 = 100 ¢ .

.0 ‘ ‘ S L 3

S 0K 100K 200K 300K = 58 - IH 1

of queries Covid CitiBike
(¢) Turbo on CitiBike, kzipr = 0 (d) Runtime evaluation

Fig. 3.11: (a-c) Partitioned streaming database: system-wide consumed budget (Question 7);
(d) PMW-Bypass runtime in non-partitioned setting (Question 8). (a-c) Turbo is instantiated
with tree-structured PMW-Bypass and Exact-Cache, with and without warm-start. (d) Uses Covid,
kzipt = 1, and one Exact-Cache and PMW-Bypass. Shows execution runtime for different execu-
tion paths. Most expensive is when the SV test fails.

of partitions.

3.7.4 Use Case (3): Partitioned Streaming Database

System-wide evaluation. Question 7: In streaming databases partitioned by time, does Turbo
significantly improve privacy budget consumption compared to baselines? Does warm-start help?
Fig. 3.11a-3.11c show Turbo’s budget consumption compared to the baselines. The experiments
simulate a streaming database, where partitions arrive over time and queries request the latest P
partitions, with P chosen uniformly at random between 1 and the number of available partitions.

Turbo outperforms both baselines significantly for all workloads, particularly when warm-start is

73

enabled. Without warm-start, Turbo improves performance by 1.5 — 3.5x at the end of the work-
load. With warm-start, Turbo gives 1.9 — 5.4x improvement over the best baseline for each work-
load, showing its effectiveness for the streaming use case. When there is a large variety of unique
queries the tree-structured Exact-Cache has a significantly better hit-rate than the Exact-Cache
baseline and performs better (Fig. 3.11a). In Fig. 3.11b and 3.11c the query pool is considerably
smaller. Both baselines have a good enough hit-rate while the tree-structured Exact-Cache needs
to consume more privacy budget to compensate for the aggregation error which makes it perform

worse. This concludes our evaluation across use cases (goal (G6)).

3.7.5 Runtime and Memory Evaluation

Question 8: What are Turbo’s runtime and memory bottlenecks? We evaluate Turbo’s runtime
and memory consumption to identify areas of improvement. Fig. 3.11d shows the average runtime
of Turbo’s main execution paths in a non-partitioned database. The Exact-Cache hit path is the
cheapest and the other paths are more expensive. Histogram operations are the bottlenecks in
CitiBike due to the larger domain size (), while query execution in TimescaleDB is the bottleneck
in Covid due to the larger database size (n). The R1 path is similar across the two datasets because
their distinct bottlenecks compensate. Failing the SV check (output path R2) is the costliest path
for both datasets due to the extra operations needed to update the heuristic’s per-bin thresholds.
We also conduct an experiment in the partitioned streaming case and find the same bottlenecks:
TimescaleDB for Covid, histogram operations for CitiBike. Finally, we report Turbo’s memory
consumption in the streaming case with 50 partitions: 5.21MB for Covid and 1.43GB for CitiBike.
For context, the raw datasets occupy on disk 600MB and 795MB, respectively. Thus, Turbo’s
memory overhead is significant and it is caused by the PMWs. The next section discusses this

limitation and proposes potential directions to address it.

74

3.8 Discussion

We discuss several of Turbo’s strengths and weaknesses. Turbo provides benefits when queries
overlap in the data they access, i.e., new queries access histogram bins that have been accessed
by past queries. The functions computed atop these bins can differ among queries (e.g., the new
query can compute an average while all the past ones computed count fractions). If there is no data
overlap in the queries, then Turbo does not give any benefit and comes with memory/computational
costs. This is typical for caching systems: they only help if the workload has some level of locality.

A key strength in Turbo is its support for dynamic workloads, both new queries and new data
arriving in the system. First, Turbo adapts seamlessly to changing queries. In the worst case, the
new queries will access completely “untrained” regions within a histogram. Our heuristic will
detect this and trigger a new cycle of external updates. In more moderate cases, the workload
will touch a mix of “trained” and “untrained” regions. This will yield a mix of hits and misses in
the heuristic, and Turbo will use just the right amount of privacy budget to adapt to these slower
workload changes. Second, thanks to histogram warm-start, Turbo adapts to new data partitions
arriving into the system with minimal privacy budget consumption: as new partitions arrive, their
histograms are initialized from past ones and then fine-tuned for the new data by a few external
updates. This way, the new histograms will quickly start serving query answers for free, conserving
privacy budget. Still, there is a limitation: while we support new data arriving in the system, we
do not support updates on past data; such updates would result in our heuristics predicting less
accurately when the histogram can answer a query, and thus in more expensive SV failures.

By far, Turbo’s biggest limitation is the memory consumed to maintain the PMW histograms.
Each histogram is a RedisAl vector whose size grows with data domain size N, i.e., exponentially
in data domain dimension d (N and d are defined in Section 3.5.1). With T partitions and k
queries, Turbo maintains a binary tree of such histograms, which means it stores ~ 2T N scalar
values. By comparison, the Tree Exact-Cache baseline stores at most log(7")k scalar values, a

much lower memory consumption. This impacts not only the scale of the datasets that can be

75

handled with Turbo, but also the runtime performance of Turbo-mediated queries. Indeed, as
shown in the preceding section, histogram operations for CitiBike are the bottleneck in runtime
due to the relatively high domain size. Some techniques have previously been proposed to address
this rather fundamental challenge for PMW [92]. However, for even larger-scale deployments,
we believe that it will be worth considering PMW alternatives that may not offer as compelling
convergence guarantees as PMW but which are much more lightweight. One example may be the
relaxed adaptive projection (RAP) [93], which builds a lightweight representation of the dataset
by learning a small subset of representative data points using gradient-descent. One would have to
be willing to forfeit the theoretical convergence guarantees to use this mechanism, and to develop
an adaptive version of RAP to support realistic systems settings involving dynamic workloads and
data. Even so, some of the core concepts we have proposed in this paper may transfer to this new
design, including passing RAP-based estimations through an SV to ensure result accuracy while
incorporating a heuristic-based bypass to avoid expensive failures in the SV.

We also touch on several potential vulnerabilities. First, an adversary may craft queries that
consume budget by generating cache misses. The convergence proofs in §?? provide a bound on
how much such queries can affect budget consumption when a straightforward cutoff parameter
is configured upfront. Second, response time can be a side-channel, which we leave out of scope
but should be addressed in the future. Third, n, the number of elements in the database (or in each
partition), is considered public knowledge. This can leak information and should be addressed by
consuming some of the budget to compute n privately, as done in [9].

Regarding integration of Turbo with a real system, Tumult, we find that it can be done with
ease, thanks to Tumult Core’s extensible measurement API. We anticipate that such integration
will not be as easy or “light touch” in other DP systems we have seen, and in general we see a
gap in the core primitives that DP systems (SQL or not) should implement to support extensions
such as Turbo; these might include providing direct access to the privacy accountant, decoupling
the accountant from the query executor, and others. We encourage the community to work to

articulate this set of key primitives, which we suspect will be useful in other extensions beyond

76

Turbo.

3.9 Related Work

This paper presents the first design, implementation, and evaluation for a general, effective,
and accurate DP-caching system for interactive DP-SQL systems. In computer systems, caching
is a heavily-explored topic, with numerous algorithms and implementations [94, 95, 96], some
pervasively used in processors, operating systems, databases, and more. However, traditional forms
of caching differ significantly from DP caching, justifying the need for a specialized approach for
DP. The primary purposes of traditional caching are to conserve CPU and to improve throughput
and latency; for these purposes, existing caches can be readily reused in DP systems. However, DP
caching aims to conserve privacy budget, which requires a new design to be truly effective. For
example, layering Redis on a DP database to cache query results would save CPU, but for privacy
it would be equivalent to the “Exact-Cache” baseline that our evaluation shows is less effective
than Turbo. This paper thus builds upon general traditional caching concepts — such as the two-
layer design, the principle of generality in supporting multiple workloads — but develops a cache
specialized in conserving DP budget.

To our knowledge, no existing DP system incorporates such a specialized caching system.
Most DP systems do not incorporate caching capabilities at all [83, 97, 30, 71, 98, 99]; [29] ex-
plicitly leaves the design of an effective DP cache for future work. Some DP systems incorporate
what amounts to an Exact-Cache by deterministically generating the same noise upon the arrival
of the same query. Three systems consider more sophisticated mechanisms for DP result reuse:
PrivateSQL [100], Chorus [72], and CacheDP [101]. But the result reuse components in these sys-
tems suffer from such significant limitations that they cannot be considered general and effective
caching designs. PrivateSQL [100] takes a batch of “representative” offline queries and precom-
putes a private synopsis that answers them all. If new queries arrive (online), PrivateSQL uses
the synopsis to answer them in a best-effort way, without accuracy guarantees. It does not learn

on-the-fly from them, so it is unsuited for online workloads and does not support data streams.

77

Chorus [72] provides a trivialized implementation of MWEM, a variant of PMW, however the
implementation only works for databases with a single attribute. The paper does not evaluate the
MWEM-based implementation, nor integrates it as a caching layer. CacheDP [101] is an interac-
tive DP query engine and has a built-in DP cache that answers queries using the Matrix Mecha-
nism [102]. Our experience with the CacheDP code suggests that it is not a general, effective, or
accurate caching layer for DP databases. First, CacheDP’s implementation only scales to a few
attributes and does not support parallel composition on data partitions; this suggests that it is not
general enough to support a variety of workloads. Second, the “Tree Exact-Cache” baseline with
which we compare in evaluation matches, to our understanding, the CacheDP design while scaling
to the higher-dimension datasets and streaming workloads we evaluate against. Our evaluation
shows Turbo more effective than Tree Exact-Cache.

While DP caching are under-explored in systems, the topic of optimizing global privacy bud-
get for a query workload is heavily explored in theory. Approaches include generating synthetic
datasets or histograms that can answer certain classes of queries, such as linear queries, with ac-
curacy guarantees and no further privacy consumption [75, 103, 104, 93, 92, 86]; and optimizing
privacy consumption over a batch of queries by adapting the noise distribution to properties of the
queries [102, 105, 106]. Apart from PMW [75], all these methods operate in the offline setting,
where queries are known upfront. This setting is unrealistic, as discussed in §3.4.2.

All of the theory works cited above, including PMW, suffer from another limitation: they
operate on static datasets and do not support new data arriving into the system. PMWG [107] is
an extension of PMW for dynamic “growing” databases, but operates in a setting where all queries
request the entire database. This precludes the use of parallel composition for queries that access
less than the entire database, such as queries over windows of time. Other algorithms focus on
continuously releasing specific statistics over a stream, such as the streaming counter [108] that
inspired our tree structure, and extensions to top-k and histogram queries [109]. These works do
not support arbitrary linear queries, and they answer all predefined queries at every time step while

we only pay budget for queries that are actually posed by analysts.

78

3.10 Conclusion

Turbo is a caching layer for differentially-private databases that increases the number of linear
queries that can be answered accurately with a fixed privacy guarantee. It employs a PMW, which
learns a histogram representation of the dataset from prior query results and can answer future
linear queries at no additional privacy cost once it has converged. To enhance the practical effec-
tiveness of PMWs, we bypass them during the privacy-expensive training phase and only switch to
them once they are ready. This transforms PMWs from ineffective to very effective compared to
simpler cache designs. Moreover, Turbo includes a tree-structured set of histograms that supports
timeseries and streaming use cases, taking advantage of fine-grained privacy budget accounting

and warm-starting opportunities to further increase the number of answered queries.

79

Chapter 4: Cookie Monster: Efficient On-device Budgeting for

Differentially-Private Ad-Measurement Systems

4.1 Overview

With the impending removal of third-party cookies from major browsers and the introduction
of new privacy-preserving advertising APIs, the research community has a timely opportunity to
assist industry in qualitatively improving the Web’s privacy. This paper discusses our efforts,
within a W3C community group, to enhance existing privacy-preserving advertising measurement
APIs. We analyze designs from Google, Apple, Meta and Mozilla, and augment them with a more
rigorous and efficient differential privacy (DP) budgeting component. Our approach, called Cookie
Monster, enforces well-defined DP guarantees and enables advertisers to conduct more private
measurement queries accurately. By framing the privacy guarantee in terms of an individual form
of DP, we can make DP budgeting more efficient than in current systems that use a traditional
DP definition. We incorporate Cookie Monster into Chrome and evaluate it on microbenchmarks
and advertising datasets. Across workloads, Cookie Monster significantly outperforms baselines

in enabling more advertising measurements under comparable DP protection.

4.2 Introduction

Web advertising is undergoing significant changes, presenting a major opportunity to enhance
online privacy. For years, numerous entities, often without users’ knowledge, have exploited Web
protocol vulnerabilities, such as third-party cookies and remote fingerprinting, to track user activity
across the Web. This data has been used to target individuals with ads and assess ad campaign
performance. Two key shifts are reshaping this landscape. First, major browsers are making it

more difficult to track users across websites. Apple’s Safari and Mozilla’s Firefox blocked third-

80

party cookies in 2019 [110] and 2021 [111], respectively, while Google Chrome will soon facilitate
users’ choice of disabling these cookies [112]. Additionally, browsers are strengthening defenses
against IP tracking [113] and remote fingerprinting [111, 114, 115].

Second, acknowledging the critical role online advertising plays in the Web economy — and the
impossibility of perfect tracking protection — browsers are introducing explicit APIs to measure
ad effectiveness and enhance ad delivery while protecting individual privacy. Early designs, like
Apple’s PCM [116] and Google’s FLoC [117], focused on intuitive but not rigorous privacy meth-
ods, resulting in limited adoption due to poor utility [118] or privacy [119]. Recently, browsers
have shifted to theoretically-sound privacy technologies — such as differential privacy (DP), se-
cure multi-party computation (MPC), and trusted execution environments (TEEs) — in the hope of
achieving better privacy-utility tradeoffs.

However, substantial challenges remain in implementing these privacy technologies at Web
scale. The research community now has a timely opportunity — and responsibility — to assist indus-
try in refining these technologies to deliver both strong privacy protections and meet advertising
needs. Only by addressing these challenges can we hope to drive adoption of privacy-preserving
APIs, remove incentives for individual tracking, and meaningfully improve Web privacy.

This paper focuses on our efforts to analyze and enhance current ad-measurement APIs (a.k.a.,
attribution-measurement APIs), which enable advertisers to measure and optimize the effectiveness
of their ad campaigns based on how often people who view or click certain ads go on to purchase
the advertised product. While separate ad-targeting APls are also under development [120], we
concentrate on ad-measurement APIs.

The W3C’s Private Advertising Technology Community Group (PATCG) [121] is working
towards an interoperable standard for private ad-measurement APIs. Leading proposals include
Google’s Attribution Reporting API (ARA) [122], Meta and Mozilla’s Interoperable Private Attri-
bution (IPA) [123], Apple’s Private Ad Measurement (PAM) [124], and a hybrid proposal [125].
Our first contribution is a systematization of these proposals into abstract models, followed by a

comparative analysis to identify opportunities for improving their privacy-utility tradeoffs (§4.3).

81

We focus on the differential privacy (DP) component, present in all four systems. DP is used
to ensure advertisers cannot learn too much about any single user through measurement queries.
Each system employs a privacy loss budget, accounting for the privacy loss incurred by each query.
Once the budget is exhausted, further queries are blocked. This process, called DP budgeting, is
handled centrally in IPA, but in the other systems, DP budgeting is done separately by each device.
We observe that this on-device budgeting cannot be formalized under standard DP and instead
requires a variant, individual DP (IDP) or personalized DP [126], for proper formalization. Our
formal modeling and analysis of on-device budgeting under IDP form our second contribution
(§4.5).

Through our IDP formalization, we uncover optimizations that enhance utility in on-device
budgeting systems, allowing advertisers to execute more accurate queries under the same DP bud-
get. IDP enables devices to maintain their own, separate DP guarantees and to account for privacy
loss based on the device’s data. This lets a device deduct zero privacy loss if it lacks relevant data
for a query. Notably, one such optimization is already used in ARA, though without formal jus-
tification. Our third contribution is providing formal proof for this optimization as well as other,
novel optimizations that can further improve the privacy-utility tradeoff.

Our final contribution is a prototype implementation of our optimized DP budgeting system,
called Cookie Monster, integrated into ARA within Chrome (§4.4, §4.6). Cookie Monster is the
first ad-measurement system to enforce a fixed, user-time DP guarantee [127], improving on the
event-level guarantees of ARA. We evaluate Cookie Monster on microbenchmarks and advertising
datasets (§5.6), showing that it delivers x1.16-2.88 better query accuracy compared to a user-
time version of ARA and substantially outperforms IPA, which exhausts its budget very early.
Our prototype is available at ht tps://github.com/columbia/cookiemonster and has

been incorporated into a W3C draft report on privacy-preserving attribution from Mozilla [128].

82

https://github.com/columbia/cookiemonster

4.3 Review of Ad-Measurement APIs

We review the designs of privacy-preserving ad-measurement systems considered for a poten-
tial interoperable standard at PATCG: Meta and Mozilla’s IPA, Google’s ARA, Apple’s PAM, and
Meta and Mozilla’s Hybrid. ARA and IPA are implemented; PAM and Hybrid exist only as design
docs. We abstract their functionality for comparison and articulate the improvement opportunity

addressed in this paper.

4.3.1 Example Scenario

We use a fictitious scenario to illustrate the motivation and requirements of ad-measurement

systems from two key perspectives: Ann, a web user, and Nike, an advertiser measuring ad cam-
paign effectiveness. While real-world players like first-party ad platforms (e.g., Meta) and ad-techs
(e.g., Criteo) typically run measurement queries on behalf of advertisers, for simplicity, we assume
the advertiser performs its own measurements.
User perspective. Ann visits various publisher sites, such as nytimes.com and facebook.com,
where she sees ads. She understands that ads fund the free content she enjoys and occasionally
finds them useful, like when she clicked on a Nike ad for running shoes on nytimes.com and later
purchased a pair. However, Ann values her privacy and expects no cross-site tracking, meaning
no site should track her across different websites. She also expects limited within-site linkability,
preventing even a single site from linking her activities across cookie-clearing browsing sessions
(e.g., incognito sessions). Ann accepts that some privacy loss is necessary for effective advertising
but expects it to be explicitly bounded and transparently reported by her browser.

Fig. 4.1 shows a screenshot of the privacy loss dashboard we developed for Cookie Monster in
Chrome, where Ann can monitor the privacy loss resulting from various sites and intermediaries
querying her ad interactions, including impressions (e.g. ad views and clicks) and conversions
(e.g. purchases, cart additions). While Ann may not grasp the concept of differential privacy that

underpins the reported privacy loss, she trusts her browser to enforce protective bounds on it.

83

< & & Chromium | chrome://attribution-internals
Active Sources Source Registrations Privacy Loss
Advertiser; | nike.localhost v | Go!

Advertiser: nike.localhost

1.0
On Sun Apr 14 2024, you
converted on nike.localhost.
0.8~
This resulted in a privacy
loss of 0.25 against this site
0.6 due to attributed
impression on —
nytimes.localhost:8087 on
0.4~ Sat Apr 13 2024
S
0.2
0.0~ N '
Mar 18-24 Mar 25-31 Apr 1-7 Apr 8-14

Fig. 4.1: Privacy loss dashboard. Screenshot from our Chrome implementation of Cookie Mon-
ster (minimally edited for visibility).

Advertiser perspective. Nike runs multiple ad campaigns for its running shoes, some emphasiz-
ing shock-absorbing technology, others focusing on aesthetics. Nike seeks to understand which
campaigns perform best across different demographics and contexts (e.g., publisher sites, content
types). In the past, Nike used third-party cookies and device fingerprinting! to track individuals
from ad impressions to purchases, attributing purchase value using an attribution function, such
as last-touch (giving all credit to the last impression) or equal credit (splitting value among recent
impressions). Using such attribution reports from many users, Nike measured the purchase value
attributed to different campaigns and optimized future ad targeting.

Now that third-party cookies are disabled on multiple browsers and fingerprinting is harder,
Nike is transitioning to ad-measurement APIs, expecting similar attribution measurements with
comparable accuracy. Nike understands that ad measurement has always involved some impreci-
sion (e.g., due to cookie clearing or fraud), so its expectation of accuracy from these APIs is not

stringent. Nike plans to conduct numerous attribution measurements over time to adjust to chang-

The example is fictitious, as are claims regarding the companies mentioned.

84

@ batch of encrypted
attribution reports,

Ad-techs U ‘Advertisers U

Publishers @ bacnor) MPC P MPC/TEE
attribution reports IIC match keys, attribution function DP query execution
(encrypted), query, € mm DP query execution

queries N N
DP budgeting Querier

(Publisher/

Advertiser/ attribution
i Ad-tech) function

5 i Querier

Runtimes DP

Functions (Publisher/

— = il budgetin,
attribution functlo_n on-device Advertiser/ ® encrypted geting
LDP guery execution Ad-tech) attribution
DP budgeting reports (€ as 1
@ encrypted I/C gy - - auth data)
impressions. match keys]]
gecod NI I N

Ad-Measurement API
(ARA, IPA, PAM, Hybrid)

attribution attribution
function function
DP P

G

D
budgeting budgeting

conversions @ impression (1),

@ impression (1), conversion (C) events
Devices conversion (C) events (¢ specified for C mmm)

(@) Common architecture (b) Off-device budgeting architecture (IPA) (c) On-device budgeting architecture (ARA, PAM, Hybrid)

Fig. 4.2: Architectures of ad-measurement systems. Common structure, with a key difference in
where attribution and DP budgeting occur: off-device (IPA) vs. on-device (ARA, PAM, Hybrid).

ing user preferences and product offerings. These measurements are single-advertiser summation

queries, a key query type that ad-measurement systems aim to support.

4.3.2 Ad-Measurement Systems

IPA, ARA, PAM, and Hybrid aim to balance user privacy with utility for advertisers and other

Web-advertising parties (referred to as queriers). Utility is defined as the number of accurate
measurement queries a querier can execute under a privacy constraint. Despite variations in termi-
nology, privacy properties, and mechanisms, these systems share key similarities. A commonality
is the use of DP techniques, with ARA focusing on event-level DP, while IPA, PAM, and Hybrid
emphasize user-time DP. This paper focuses on user-time DP, applied per querier site, as defined
in §4.5.2.
Common architecture. The high-level architecture of all four systems is similar (see Fig. 4.2a).
All systems act as intermediaries between user devices and sites. Previously, these parties col-
lected impression and conversion events directly, matched them through third-party cookies, per-
formed attribution, and aggregated reports. To break these privacy-infringing direct data flows,
ad-measurement systems interpose a DP querying interface over impression and conversion data.

All systems include three core components: (1) the attribution function, which matches con-
versions to relevant impressions on the same device and assigns conversion value to impressions

based on an attribution logic like last-touch; (2) DP query execution, which aggregates reports and

85

adds noise for DP guarantees; and (3) DP budgeting, which tracks privacy loss from each query
using DP composition and enforces a maximum on total privacy loss, called a DP budget.

A key difference is where these components are executed. In IPA, all components run off-
device within an MPC involving multiple helper servers. In ARA, PAM, and Hybrid, attribution
and DP budgeting occur on-device, while DP query execution is off-device, in an MPC (PAM,
Hybrid) or TEE (ARA). The MPC/TEE is trusted not to leak inputs, and the devices are trusted to
safeguard their own data. The placement of attribution and DP budgeting is crucial for this paper.
Off-device budgeting (IPA). Fig. 4.2b illustrates IPA, which operates in a standard centralized-
DP setting. The MPC handles all three functions, while the device’s role is limited to generating
a match key to link impressions and conversions. For example, when nytimes.com sends an ad for
Nike shoes to Ann’s device (I), the device responds with a match key, secret-shared and encrypted
toward the MPC helper servers (2). When Ann later purchases the shoes on nike.com, her device
sends the same key to the MPC, also secret shared and encrypted toward the helpers. Periodically,
NYtimes sends batches of encrypted impression match keys to Nike, who cannot directly match
these with its conversion match keys due to the encryption and secret sharing. Instead, Nike collects
its conversion match keys and NYtimes’ impression match keys into batches and submits them
to the MPC, specifying the privacy budget € to spend on the query 3). The MPC checks the
budget, matches impressions to conversions, applies the attribution function with an L' cap for
sensitivity control, aggregates the data, and adds DP noise to enforce e-DP. The MPC tracks and
deducts Nike’s privacy budget, refusing further queries once the budget is exhausted until the per-
site budget is “refreshed” (e.g., daily).

On-device budgeting (ARA, PAM, Hybrid). Fig. 4.2c shows the on-device architecture, which
operates in a rather non-standard DP setting. While DP query execution occurs centrally on the
MPC or TEE, attribution and DP budgeting are done separately on each device. Every device
maintains a timeseries database of impression and conversion events. When Ann sees an ad for
Nike on nytimes.com, her device records it locally (I). Later, when she buys shoes on nike.com,

Nike requests an attribution report from her device. Ann’s device checks its database for relevant

86

impressions, applies the attribution function with an L' cap, and sends an attribution report @),
either secret-shared and encrypted toward the helper parties (for MPC) or directly encrypted to a
TEE. Nike aggregates attribution reports from multiple users, submits them to the MPC or TEE,
which performs DP aggregation, adding noise based on Nike’s € parameter 3). The MPC/TEE
ensures each report is used only once for sensitivity control.

DP budgeting in on-device systems differs from centralized DP by accounting for privacy loss
when the advertiser requests a conversion report, prior to query execution. When Nike requests a
report, it specifies the € parameter for the future query. The device checks Nike’s budget locally,
generates and encrypts the report (with secret sharing if MPC is used), includes € as authenticated
data, and deducts € from Nike’s local budget. Since the budget is spent at the device, each report
can only be used once, so the device includes a unique nonce with every report in authenticated
data and the MPC/TEE tracks report nonces to prevent reuse.

Threat models. The threat models differ based on whether an MPC or TEE is used. In all cases,
MPC/TEE systems are trusted to protect inputs and intermediate states. For MPC, the deploy-
ment models assume either a three-party, malicious, honest-majority MPC protocol (IPA, Hy-
brid) [123] or a two-party malicious protocol (PAM). The querier selects MPC parties from a
browser-configured list, typically relatively trusted Web organizations like Cloudflare. The device

secret shares the report and encrypts it toward the chosen parties after report generation.

4.3.3 Improvement Opportunity

On-device budgeting systems offer certain advantages over off-device systems but also present
a key challenge, which we aim to address. First, on-device systems can enhance user transparency
by putting the user’s device in control of per-site budgets and the tracking of privacy losses incurred
by the user due to specific attribution reports the device releases to various querier sites, as seen
in the Cookie Monster privacy loss dashboard (Fig. 4.1). In contrast, in IPA, the device can only
track the encrypted match keys returned by the device, not the specific privacy losses users incur

through subsequent matching and aggregation in the MPC.

87

Second, on-device systems allow for finer-grained budgeting. While off-device systems en-
force a global site-wide budget €, on-device systems maintain a per-device budget €, which is
only consumed for queries involving that device. This granularity enables Nike, for instance, to
continue querying other users’ reports even if it exhausts Ann’s budget. However, this behavior
requires formalization under the less standard (but equally protective) privacy definition known
as individual DP (IDP) [126], which allows enforcement of a separate privacy guarantee for each
device.

The challenge lies in formalizing the data, query, and system model that capture the behavior
of on-device ad-measurement systems, and in proving its IDP properties. This formalization then
opens opportunities for further optimizing DP budgeting in on-device systems by deducting privacy
loss based on the device’s data. However, it also requires keeping the remaining privacy budgets on
each device private, as revealing these budgets leaks data. This paper presents a formally-justified,
practical and efficient DP budgeting module, Cookie Monster, designed for on-device systems like

ARA, PAM, and Hybrid, which maximizes utility while maintaining DP guarantees.

4.4 Cookie Monster Overview

The design of Cookie Monster is guided by three principles. First, it must enforce well-defined
DP guarantees at an industry-accepted granularity. We adopt a fixed “user-time” DP guarantee for
each querier, supported by IPA, PAM, and Hybrid, and recognized by Apple, Meta, and Mozilla as
the minimum acceptable. Second, Cookie Monster must support similar use cases and queries as
existing systems.

Finally, Cookie Monster must not introduce new vectors for illicit tracking, given increasing
browser efforts to prevent tracking both across sites and within-site across cookie refreshes.

Fig. 4.3 presents Cookie Monster’s architecture with an example execution overlaid. We de-

scribe each aspect below.

88

Publisher Publisher Advertiser
(nytimes. (bbc.com) (nike.com)

com) Price:$60-100

@e4: C1, with params:
@e1: 11 @e2: 12 output_dimension m=2,

Ad Ad attribution_window_epochs E=[e1...e4],
& &; conversion_value=70,
max_conversion_value=100,

€=0.01 1N

Cookie Monster (on device d)

(guarantee: individual device-epoch £° +DP

1
I
|
1
for each querier) !
A 4

Algorithm (summary): check for relevant
impressions in epochs E with sufficient budget

attribution
function

€*70/100, deducting individual privacy loss in each encrypted
epoch with relevant impressions. attribution
P kit ke s 8 report
[; ; p={(12,70),
[- (0,0)}

individual
device-epoch t x
privacy loss
(nike.com)

. time L
(epochs) [~

DP budgeting
(per querier)

time
De' D& D3 Dde4 (epochs)
d d

events
data

device-
epoch

Fig. 4.3: Cookie Monster architecture and example execution (red overlay). §4.4.1 describes
the architecture and §4.4.2 the example execution. Notation: @e; : I indicates that Ann’s device
receives an impression /; of a Nike shoe ad from nytimes.com in epoch e;. Red dotted arrows
show the attribution function’s search for impressions over epochs e; — e4.

4.4.1 Architecture

Cookie Monster adopts on-device budgeting, similar to ARA, PAM, and Hybrid. DP query
execution occurs off device, in an MPC or TEE, trusted not to leak inputs or intermediate states.
Since Cookie Monster does not modify this component, it is omitted from Fig. 4.3; we think of
it as a trusted aggregation service. Cookie Monster modifies the on-device component, based on
ARA in our prototype. While the external APIs remain unchanged, we modify: (1) the on-device

events database to support a “user-time” guarantee, and (2) the internals of the attribution function

89

and DP budgeting to enforce this guarantee efficiently.

Cookie Monster enforces individual device-epoch eg-DP for each querier site, formally de-
fined in §4.5.2. This device-epoch granularity aligns with traditional “user-time” from DP lit-
erature [127, 9, 8], though we rename it to reflect that a user’s complete activity is not directly
observable by a device or browser, the scope in which Cookie Monster operates. We partition
the on-device events database into time-based epochs, such as weeks or months. In each epoch
e, device d collects impression and conversion events into a device-epoch database D¢,. Queriers
submit multiple queries over time, accessing data from one or more epochs. For each epoch e,
Cookie Monster ensures that no querier learns more about device d’s data in e than permitted by
an € -DP guarantee.

The DP budgeting in Cookie Monster is implemented using privacy filters [129], which ensure
that the cumulative privacy loss from a series of queries does not exceed a pre-specified budget.
For each querier, Cookie Monster maintains multiple filters — one for each device-epoch database.
Fig. 4.3 shows these filters for nike.com. Each filter is initialized with a privacy budget eg and
monitors cumulative privacy loss for queries involving data from that epoch.

In on-device systems, privacy loss is accounted for when the attribution report is generated, not
when the query is executed. The attribution function is responsible for generating these reports.
Upon a conversion, the function checks for relevant impressions in the device-epoch databases
within a specified attribution window. Privacy filters prevent use of impression data from epochs
with insufficient budget.

For epochs with sufficient budget, the filter allows access to the device-epoch data and deducts
privacy loss. Under standard centralized DP, this loss would be €, the DP parameter enforced later
by the MPC or TEE during aggregation. However, our theoretical analysis of on-device budget-
ing reveals that viewing the system under an individual-DP lens opens opportunities to optimize
privacy accounting, often allowing deductions of “less than €.” §4.5 outlines our theoretical anal-
ysis, a major contribution in this paper. We dedicate the remainder of this section to providing the

systems view of our theory, including an execution example (§4.4.2), Cookie Monster’s algorithm,

90

which is backed by our theory (§4.4.3), and a discussion on mitigating IDP-induced bias (§4.4.4).

4.4.2 Execution Example

The red overlay in Fig. 4.3 illustrates the attribution function’s operation for the example from
§4.3.1. Ann receives two impressions of Nike shoe ads: one in epoch e; and another in e;, with no
impressions in e3. Later, in epoch e4, Ann buys the shoes, and nike.com registers a conversion C1.
It requests an attribution report with parameters: the set of epochs E to search for impressions, the
maximum number of impressions m to attribute value to, the conversion value ($70), and €, the
privacy parameter enforced by the MPC or TEE when executing the aggregation query.

The shoes’ price ranges by color, with a maximum of $100. While Ann’s conversion is $70,
Nike’s query will include conversions up to $100. Thus, for a summation query with the Laplace
mechanism, the noise added to the aggregate depends on 100/€, where 100 is the global sensitivity
of the summation (i.e., the largest change any device-epoch can contribute). Ann, with a purchase
of $70, can only contribute up to $70 across her device-epochs.

Here, IDP lets us optimize privacy loss based on individual sensitivity, the maximum change
that a specific device-epoch can make on the query output. In this case, Ann’s device only deducts
€’ = $70/$100 = € from the privacy filters of the epochs in the attribution window E. This is one
optimization enabled by IDP. Another is that if no relevant impressions exist in an epoch (e.g.,
e3 in Fig. 4.3), we need not deduct anything, since the individual sensitivity for that epoch is 0
and thus its privacy loss is also 0. §4.5.3 formalizes global and individual sensitivities and details
further optimizations.

In Fig. 4.3, Cookie Monster’s attribution function checks epochs e; — ey for relevant impres-
sions. In e;, access to data DZ‘ is denied because the filter has exhausted nike.com’s budget. In
e, the filter allows access, and a relevant impression /; is found, deducting € (shown as a red
square in the e, filter). In e3, there is budget, but no relevant impression is found, so no deduction
occurs. Finally, in e4, where the conversion happened but no impression occurred, then through

a formalization of publicly available information that we support (§4.5.1), we can justify that no

91

privacy loss occurs in e4.

The final attribution report assigns the $70 value to the single impression I, and includes a null
value for the second attribution, as Nike requested two. If no impressions were found, or Nike also
ran out of budget in e;, the attribution function would return a report with two null values to avoid

leaking information about ad presence.

4.4.3 Algorithm

Listing 4.1 shows how Cookie Monster computes an attribution report.
The compute_attribution_report functionreceives an attribution_request, which en-

capsulates all querier-provided parameters, sanitized by the device. Key parameters include:
1. the window of epochs to search for relevant events (epochs parameter);
2. the requested privacy budget (requested_epsilon);
3. logic for selecting relevant events (select_relevant_events);
4. the attribution policy, such as last-touch or equal-credit (compute_attribution);

5. two global sensitivity parameters: report_global_sensitivity, the maximum change
a device-epoch can make to the output of the report generation function, and

query_global_sensitivity, the maximum across all devices and reports;

6. p-norm, based on the DP mechanism in MPC/TEE, e.g., 1-norm for Laplace and 2-norm for

Gaussian.

All parameters follow a predefined protocol, and while the algorithm is general enough to
handle different mechanisms and p-norm sensitivities, our DP result (Thm. 7) focuses on pure DP,
assuming the Laplace mechanism and L; sensitivity.

Computing an attribution report consists of four steps.

92

Step 1: Cookie Monster invokes the querier-provided select_relevant_events to select
relevant events from each separate epoch in the attribution window, such as impressions with a
specific campaign ID.

Step 2: For each epoch, Cookie Monster computes the individual privacy loss resulting from

the querier’s query, following the IDP optimizations in Thm. 10. Three cases:
1. if the epoch has no relevant events, privacy loss is zero;

2. if a single epoch is considered, privacy loss is proportional to the L,-norm of the attribution

function output;

3. if multiple epochs are considered, privacy loss is proportional to the report’s global sensitiv-
ity.

The privacy loss is scaled by requested_epsilon and the query’s global sensitivity. In §4.4.2,
the report’s global sensitivity is 70, and the query’s global sensitivity is 100.

Step 3: For each epoch, we attempt to deduct the computed privacy loss from the querier’s
budget for that epoch, ensuring atomic, thread-safe checks. If the filter has sufficient budget, the
epoch’s events are used for attribution; otherwise, they are dropped. The justification for dropping
contributions is provided in Theorem 7.

Step 4: The attribution function is applied across events from all epochs, following the querier’s
policy. The device ensures that the attribution computation: (1) respects the querier’s specified
report_global_sensitivity by clipping the attribution histogram to ensure its L,-norm is <
report_global_sensitivity, and (2) produces encrypted outputs indistinguishable from oth-
ers. For (2), the device ensures a fixed dimension for the attribution report by padding or dropping
elements. For instance, if only one relevant impression is found but two are requested, the output
vector is padded with a null entry.

For the example in §4.4.2, this algorithm is invoked with an attribution_request where
querier_site = “nike.com,” epochs = [e| — e4], report_global_sensitivity = 70,

query_global_sensitivity = 100. Function select

93

_relevant_events filters impressions by campaign ID, pnorm returns the L1-norm of the attri-
bution histogram, and compute_attribution divides the conversion value of 70 across at most

two impressions, padding with nulls as needed. This attribution function has sensitivity 70.

Global variables: events_database, privacy_filters.
def compute_attribution_report (attribution_request):
relevant_events_per_epoch = {}

for epoch in attribution_request.epochs:

relevant_events = attribution_request.select_relevant_events (events_database[epoch]) f Step 1
individual_privacy_loss = compute_individual_privacy_loss (relevant_events, attribution_request) # Step 2
filter_status = privacy_filters[attribution_request.querier_site] [epoch].check_and_consume (individual_privacy_loss) #
Step 3
if filter_status == "out_of_budget":
relevant_events = {}
relevant_events_per_epoch[epoch] = relevant_events
return attribution_request.compute_attribution (relevant_events_per_epoch) # Step 4

def compute_individual_privacy_loss (epoch_events, attribution_request):

if epoch_events == {}: # Case 1 in Theorem 4
return 0
if len(attribution_request.epochs) == 1: # Case 2 in Theorem 4

individual_sensitivity = attribution_request.pnorm(attribution_request.compute_attribution (relevant_events))
else: # Case 3 in Theorem 4
individual_sensitivity = attribution_request.report_global_sensitivity

return attribution_request.requested_epsilon * individual_sensitivity / attribution_request.query_global_sensitivity

Code Listing 4.1: Cookie Monster Algorithm

4.4.4 Bias Implications of IDP

The execution example and algorithm demonstrate Cookie Monster’s budget savings, con-
firmed in Section 5.6, where we show that these savings allow more accurate queries than ARA
and IPA under the same privacy guarantees. However, IDP can introduce bias into query results.
Since privacy loss and remaining budgets depend on data, they must remain hidden from adver-
tisers. When a device exhausts its budget for an epoch, it continues participating in queries with
“null” data, protecting privacy but potentially introducing bias. For example, Nike’s report should
have included two impressions, but running out of budget in epoch e¢; meant /; wasn’t returned,
altering the report undetectably.

This bias is a general challenge for all systems operating on IDP, including all existing ad-

measurement systems with on-device budgeting — although this challenge is not always acknowl-

94

edged or handled. Indeed, ARA incorporates code to send null reports when budgets are exhausted
and its documentation states that these nulls must be sent to preserve privacy [130]. Such nulls
would add bias to query results. In absence of proper IDP formulation, a rudimentary justification
we have seen for sending nulls in on-device systems is to prevent revealing budget exhaustion,
which could facilitate remote fingerprinting, a concern actively addressed by browsers. Our paper
reveals a deeper issue: these systems inherently operate under IDP, and IDP systems must keep
budgets hidden, which can lead to bias. Acknowledging this bias opens pathways to mitigate it.
Any (DP or IDP) system must tolerate some error. In ad measurement, high error tolerance is
common due to factors like tracking inaccuracies and fraud. The goal is to equip queriers with tools
that rigorously bound errors from both DP noise and IDP bias, allowing for informed decision-
making. Previous work on centralized-budgeting IDP has developed methods to bound bias using
global sensitivity [131] and periodic DP counting queries [132, 131]. These approaches require
adaptation to on-device budgeting, given the lack of centralized privacy-loss tracking and non-i.i.d.
report sampling. We leave it for future work to develop advanced bias-management tools and here
only present a rudimentary approach, which we implement in Cookie Monster and evaluate in
§4.7.5 as a proof-of-concept that bias can be effectively managed in on-device budgeting systems.
Our approach adds a side query to each attribution query, which bounds potential error from
out-of-budget epochs. With each report, the querier requests a boolean flag indicating whether the
report could be affected by an out-of-budget epoch. This flag is bundled with the attribution report,
secret-shared, and encrypted toward the MPC/TEE. The querier receives a DP-aggregated count of
how many reports could be erroneous out of its total batch. With the count, the querier computes a
high-probability upper bound on the error from both DP noise and IDP bias. The querier can then
filter the results of its queries based on this error bound, ignoring those with unacceptable error.
Consider last-touch attribution. If no epoch in the attribution window is out of budget or an
impression is found in a later epoch, the device returns a 0-valued error assessment, indicating no
bias. If no impression is found in epochs later than the out-of-budget epoch, the device returns a 1-

valued error assessment, signaling potential bias. This information is encrypted and only accessible

95

to the querier after DP aggregation by the MPC/TEE.

This mechanism lets queriers manage IDP-induced error rigorously, though it consumes addi-
tional privacy budget. In Steps 3 and 4 of Listing 4.1, each epoch that is not out of budget must
deduct privacy loss for the side query. Fortunately, since the side query is a count query with lower
sensitivity than the main query, Cookie Monster’s optimizations still provide benefits.

Our evaluation shows that even with bias detection, Cookie Monster consumes less privacy and

incurs lower errors compared to ARA and IPA (§4.7.5).

4.5 Formal Modeling and Analysis

This section outlines the theoretical analysis behind Cookie Monster’s design, divided into
three parts: §4.5.1 introduces a formal model that captures the behavior of on-device budgeting
systems, including Cookie Monster but also ARA and PAM. §4.5.2 analyzes this model under
IDP, proving that Cookie Monster bounds cross-site leakage and within-site linkability. Finally,
§4.5.3 details and justifies the optimizations enabled by IDP, both ones inherently employed in

ARA and new ones that our theory uncovers.

4.5.1 Formal System Model

To rigorously analyze privacy properties and identify optimization opportunities in on-device
budgeting systems for ad measurement, we must establish a formal model of their behavior. Cur-
rent ad-measurement systems lack such models, preventing formal analysis or justification of opti-
mizations. Although our model is tailored to Cookie Monster, it can also serve as a foundation for
analyzing other systems.

We define the data and queries Cookie Monster operates on, from the perspective of a fixed

querier (e.g., advertiser, publisher, or ad-tech).

96

Data Model

Our data model is based on conversion and impression events collected by user devices and
grouped by the time epoch in which they occurred. We view the data available to queriers as a
database of such device-epoch groups of events, coming from many devices and defined formally
as follows.

Conversion and impression events (F). Consider a domain of impression events 7 and a domain
of conversion events C. A set of impression and conversion events F' is a subset of 7 U C. The
powerset of events is P(Z UC) :={F : F c I UC}.

Device-epoch record (x). Consider a set of epochs & and a set of devices . We define the domain
for device-epoch records X := D x & X P(I U C). That is, a device-epoch record x = (d, e, F)
contains a device identifier d, an epoch identifier e, and a set of impression and conversion events
F.

Database (D). A database is a set of device-epoch records, D C X, where a device-epoch appears
at most once. Thatis,Vd,e € DX E,|{F c T UC : (d,e, F) € D}| < 1. We denote the set of all
possible databases by D. This will be the domain of queries in Cookie Monster. Given a database
D € D and x € X, D + x denotes that device-epoch record x is added to database D that initially
did not include it.

Device-epoch events data (Df;, DdE). Given a database D € D, we define DZ c T UC as Dfl =F
if there exist (a unique) F such that (d,e, F) € D, and Dfi = () otherwise. Think of this as the
event data of device d at epoch e. We also define D& := (D¢).ep € P(I U C)IEl the events of
device d over a set of epochs E (typically a contiguous window of epochs).

Public events (P). A key innovation in Cookie Monster’s data model is to support incorporation of
side information that can be reliably assumed as available to the querier. For example, an advertiser
such as Nike can reliably know when someone places a product into a cart (i.e, a conversion
occurred), though depending on whether the user is logged in or not, Nike may or may not know

who did that conversion.

97

We model such side information as a domain of public events for a querier, denoted P € 7 UC.
P is a subset of all possible events, that will be disclosed to the querier if they occur in the system.
We do not assume that the querier knows the devices on which events in P occur, and different
queriers can have knowledge about different subsets of events. Such side information is typically
not modeled explicitly in DP systems, as DP is robust to side information. Cookie Monster also
offers such robustness to generic side information. However, we find that additionally modeling
the “public” events known to the querier has two key benefits. First, it opens DP optimizations that
leverage this known information to consume less privacy budget. Second, it lets us formally define

within-site linkability and adapt our design to provide a DP guarantee against such linkability.

Query Model

In on-device systems, queries follow a specific format: first the attribution function runs locally
to generate an attribution report, on a set of devices with certain conversions; then, the MPC sums
the reports together and returns the result with DP noise. Formally, we define three concepts:
attribution function, attribution report, and query.

Attribution function, a.k.a. attribution (A). Fix a set of events relevant to the query Fy €
P(I UCQC),and k,m € N* where k is a number of epochs. An attribution function is a function
A 1 P(I UC)* — R™ that takes k event sets Fy, ..., F; from k epochs and outputs an m-
dimensional vector A(Fy, ..., Fy), such that only relevant events contribute to A. That is, for all

(Fi,...,Fy) € P(I UC)*, we have:

A(Fl,...,Fk) =A(F1 ﬂFA,...,FkﬂFA).

Attribution report, a.k.a. report (p). This is where the non-standard behavior of on-device bud-
geting systems, which deduct budget only for devices with specific conversions, becomes appar-
ent. Intuitively, we might consider attribution reports as the “outputs” of an attribution function.
However, in the formal privacy analysis, we must account for the fact that only certain devices self-

select to run the attribution function (and thus deduct budget). We model this in two steps. First,

98

we introduce a conceptual report identifier, r, a unique random number that the device producing
this report generates and shares with the querier at report time.

Second, we define an attribution report as a function over the whole database D, that returns the
result of an attribution function A for a set of epochs E only for one specific device d as uniquely
identified by a report identifier r. Formally, p, : D € D — A(Dg). At query time, the querier
selects the report identifiers it wants to include in the query (such as those associated with a type of
conversion the querier wants to measure), and devices self-select whether to deduct budget based
on whether they recognize themselves as the generator of any selected report identifiers. Defining
attribution reports on D lets us account for this self-selection in the analysis.

Query (Q). Consider a set of report identifiers R C Z, and a set of attribution reports (0,),cg each
with output in R™. The query for (p,),eg is the function Q : D — R™ is defined as Q(D) :=

Srer pr(D) for D € D.

Instantiation in Example Scenario

To make our data and query models concrete, we instantiate the scenarios from §4.3.1.

User Ann’s data, together with that of other users, populates dataset D. Each device Ann owns has
an identifier d, and events logged from epoch e go into observation x = (d, e, F). F = 1 U C is the
set of all events logged on that device during that epoch, including impressions (/) shown to Ann
by various publishers, and conversions (C) with various advertisers. Other devices of Ann, other
epochs, and other users’ device-epochs, constitute other records in the database.

The advertiser, Nike, can observe some of Ann’s behavior on its site. As a result, any such
behavior logged in C on nike.com constitutes public information for querier Nike. This might
include purchases, putting an item in the basket, as well as associated user demographics (e.g.
when Ann is logged-in). However, Nike cannot observe impression or conversion events on other
websites. As a result, for this querier P = Cnike, Which denotes all possible events that can be
logged on nike.com. Each actual event in this set (e.g., F N Cnike, including Ann’s purchase) is

associated with an identifier r in Cookie Monster. Using these identifiers, Nike can analyze the

99

relative effectiveness of two ad campaigns a; and a, on a given demographics for a product p,
such as the shoes Ann bought. First, Nike defines the set of relevant events for the shoe-buying
conversion; these are any impressions of a; and a,. Nike uses these relevant events in an attribution
function A : P(7 U C)'E I — R? that looks at epochs in E and returns, for example, the count (or
value) of impression events corresponding to ads a; and a;. Third, using the set of report identifiers
r from purchases of p from users in the target demographic, Nike constructs a query Q that will let
it directly compare the proportion of purchases associated with ad campaign a; versus campaign

an.

4.5.2 IDP Formulation and Guarantees

With Cookie Monster’s data and query models defined, we now formalize and prove its privacy
guarantees using individual DP. After introducing our neighboring relation in §4.5.2, we briefly
define traditional DP for reference in §4.5.2, followed by individual DP in §4.5.2. In §4.5.2,
we state the IDP guarantees for Cookie Monster, which imply protection against both cross-site

tracking and within-site linkability.
Neighboring Databases

A DP guarantee establishes the neighboring database relation, determining the unit of protec-

tion. In our case, this unit is the device-epoch record. To account for the existence of public
event data (§4.5.1), we constrain neighboring databases to differ by one device-epoch record while
preserving public information. This ensures that a database containing an arbitrary device-epoch
record is indistinguishable from a database containing a device-epoch record with the same public
information but no additional data.
Neighboring databases under public information (D ~f D’). Given D, D’ € D, x = (e,d, F) €
Xand P ¢ T UC, we write D ~F D’ if there exists Dy € D such that {D,D’} = {Dg +
(e,d,F),Do+(e,d, FNP)}. This definition corresponds to a replace-with-default definition [131]
combined with Label DP [133].

100

DP Formulation (for Reference)

In DP, noise must be applied to query results based on the query’s sensitivity—the worst-case
difference between two neighboring databases. Traditional DP mechanisms rely on global sensi-
tivity.

Global sensitivity. Fix a query g : D — R™ for some m (so g could be either a query or an

individual report in our formulation). We define the global L, sensitivity of q as follows:

Aa) = D) - q(D)]|. 4.1
(@) D,D’eD:gcl?/{’(,D/:D+xHQ() — (DIl 4.1)

Device-epoch DP. When scaling DP noise to the global sensitivity under our neighboring defini-
tion, we can provide device-epoch DP. Fix € > 0 and P € 7 U C. A randomized computation
M : D — R™ satisfies device-epoch e-DP if for all databases D, D’ € D such that D ~f D’ for
some x € X, for any set of outputs S C R™ we have Pr[M(D) € §] < e Pr[M(D’) € S]. This is

the traditional DP definition, instantiated for our neighboring relation.

IDP Formulation

Since queries are aggregated from reports computed on-device with known data, we would
prefer to scale the DP noise to the individual sensitivity, which is the worst case change in a query
result triggered by the specific data for which we are computing a report.

Individual sensitivity. Fix a function ¢ : D — R™ for some m (so g could be either a query or
an individual report in our formulation) and P ¢ 7 U C. Fix x € X. We define the individual L'
sensitivity of q for x as follows:

Ac(q) = D) — q(D")||;. 4.2
+(q) D,D’e%}:ElD)s:D+x||q() q(D)[lx (4.2)

While we cannot directly scale the noise to individual sensitivity, we can scale the on-device

budget consumption using this notion of sensitivity. That is, for a fixed and known amount of noise

101

that will be added to the query, a lower individual sensitivity means that less budget is consumed

from a device-epoch. This approach provides a guarantee of individual > DP [126, 131] for a

device-epoch, defined as follows.

Individual device-epoch DP. Fix ¢ > 0, P ¢ 7 UC, and x € X. A randomized computation

M : D — R™ satisfies individual device-epoch €-DP for x if for all databases D, D’ € D such that

D ~P D’, for any set of outputs S € R™ we have Pr[M(D) € S] < e Pr[M(D’) € S].
Intuitively, IDP ensures that, from the point of view of a fixed device-epoch x, the associated

data F is as hard to recover from query results as it would be under DP.

IDP Guarantees

Through IDP, we prove two main properties of Cookie Monster: (1) Individual DP guarantee,
which implies bounds on cross-site leakage, demonstrating that the API cannot be used to reveal
cross-site activity; and (2) Unlinkability guarantee, which implies bounds on within-site linka-
bility, demonstrating that the API cannot be used even by a first-party site to distinguish whether a
set of events is all on one device vs. spread across two devices.

For the IDP guarantee, we give two versions. First, a stronger version under a mild con-
straint on the class of allowed queries, specifically that Vi,VF, A(Fy, ..., Fi—1, F;NP, Fiy1, ..., Fy) =
A(Fy,....,Fi_1,0, F;, ..., F). A sufficient condition is to ensure that queries leverage public events
only through their report identifier, i.e. F4 N P = (. The queries from the scenarios we consider
(§4.3.1) satisfy this property. Second, a slightly weaker version of the DP guarantee with increased
privacy loss, but with no constraints on the query class, which is useful when considering colluding

queriers.

Theorem 7 (Individual DP guarantee). Fix a set of public events P C 1 U C, and budget capaci-
ties (Gg)dez). Case 1: If all the queries use attribution functions A satisfying Vi,VF, A(Fy,..., Fi_1, F;N

Pa E+1”Fk) = A(Fla"-7 F‘l’-l’ 0’ Fl’

2While referred to as Personalized Differential Privacy (PDP) in some papers [126], we use the term Individual
Differential Privacy (IDP), as it better reflects the concept and aligns with individual sensitivity, the basis of the
definition. This recent paper [131] also uses IDP terminology.

102

wors Fy), then for x € X on device d, Cookie Monster satisfies individual device-epoch eg—DP for
x under public information P. Case 2: For general attribution functions, Cookie Monster satisfies

individual device-epoch 265 -DP for x under public information P.

Intuitively, the information gained on cross-site (private to the querier) events in device-epoch

x under the querier’s queries is bounded by €Y (or 2 without query constraints).

Theorem 8 (Unlinkability guarantee). Fix budget capacities (ég)dez)- Take any dy,dy € D,
e € & and Fy C Fy. Denote xo := (dy, e, Fy),x1 := (dy,e, F1),x2 := (do,e, Fo \ F) € X. For
any D, D’ € D such that {D, D’} = {Dg + xo, Do + x| + x2} for some D € D, instantiation M of

G G
Cookie Monster, and S C Range(M) we have: Pr[M(D) € S] < ¢y, Pr[M(D’) € §].

Intuitively, linking a set of events across two devices—compared to detecting these events on
one device—is only made easier by the amount of budget on the second device; Cookie Mon-
ster does not introduce additional privacy loss for linkability, above what is revealed through DP

queries.

4.5.3 IDP Optimizations

IDP allows discounting the DP budget based on individual sensitivity, which is never greater
but often smaller than global sensitivity. The easiest way to grasp this opportunity is to visualize
and compare the definitions of global and individual sensitivities for reports and queries. Recall
that Cookie Monster enforces a bound on reports by capping each coordinate in the attribution
function’s output to a querier-provided maximum. Given this cap, we prove the following formulas

for both sensitivities:

Theorem 9 (Global sensitivity of reports and queries). Fix a report identifier r, a device d,, a
set of epochs E,, an attribution function A and the corresponding report p : D +— A(Dgr). We

have:

A(p) = max ||A(F1, ..., Fx) = A(F1, ..., Fi-1,0, Fiy1, ..., Fo) |11
iE[k],Fl FkEP(IUC)

103

Next, fix a query Q with reports (py)rer such that each device-epoch participates in at most

one report. We have A(Q) = max,cg A(p;).

Theorem 10 (Individual sensitivity of reports and queries). Fix a device-epoch record x =
(d,e,F) € X. Fix a report identifier r, a device d,, a set of epochs E, = {ey,...,er}, an
attribution function A with relevant events F4, and the corresponding report p : D +— A(Dg:).
We have: Ay(p) = max ||A(Fy,...,Fi—1, F, Fiy1,.... Fy) — A(F1, ..., Fi—1, 0, Fiq, ..., Fi)l1 if
FloesFi—1,Fip1,n Fr€P(IUC)

d=d,and e = e; € E,, and A, (p) = 0 otherwise.

In particular,

0 ifd+d,e¢ E,orFNFy4=10
Ac(p) <\ |IA(F) - Ay ifd = dy and E, = {e}

A(p) ifd=d,ec E,and FNF4 # 0

Next, fix a query Q with reports (py)rer. Then we have: A (Q) < X..cr Ax(pr). In particular,

if x participates in at most one report p,, then: A,(Q) = Ac(p;).

This theorem justifies both the inherent optimization used by all on-device systems and the new
optimizations added in Cookie Monster.
Inherent on-device optimization. The condition d = d, in Thm. 10 explains why, under IDP,
on-device budgeting systems deduct privacy loss only for devices that participate in a query. This
is more efficient than off-device systems like IPA, which, under traditional DP, must deduct budget
based on A(Q) from all devices, regardless of their participation (Thm. 9).
New optimization examples. First, devices that participate in a query but have no relevant data
(i.e. FNFy = 0or A(F) = A(0) in Thm. 10) do not incur budget loss. This is why, in the
example from § 4.4.2, we don’t deduct from epoch ez, which has no Nike impressions. Second, a
device’s individual sensitivity depends only on reports it participates in (A, (Q) = A (p,)), whereas

global sensitivity depends on all reports in the query (A(Q) = max,cg A(p,)). For instance, since

104

the report p typically depends on the public information F N P of a record (d, e, F), we use a
$70 cap instead of $100 in the Nike example. Third, if an attribution spans only one epoch (or is
broken into single-epoch reports), individual sensitivity can be further reduced based on the private
information F. For example, if Nike measures the average impression-to-conversion delay (0 to
7 days) in a single epoch and a record x has one impression only 1 day before the conversion, its

individual budget will be 1/7th of the global budget.

4.6 Chrome Prototype

We integrated Cookie Monster into Google Chrome by modifying ARA. We disabled ARA’s
impression-level budgeting, added epoch support, and extended ARA’s database to include a ta-
ble for privacy filters for each epoch-querier pair. Unlike ARA, which supports only last-touch
attribution and fetches only the latest impression, our implementation retrieves all impressions re-
lated to the conversion, groups them by epoch, and identifies epochs with no relevant data to avoid

unnecessary budget consumption.

4.7 Evaluation

We seek to answer three key questions:
Q1: How do optimizations impact budget consumption?
Q2: How do optimizations impact query accuracy?

Q3: How effective is bias measurement?

4.7.1 Methodology

We evaluate Cookie Monster on three datasets—a microbenchmark and two realistic adver-
tising datasets from PATCG and Criteo—and compare its privacy budget consumption and query
accuracy against two baselines. The first baseline is IPA-like, our own prototype implementing

IPA’s centralized budgeting and query execution. The second is ARA-like, a version of ARA

105

providing device-epoch-level guarantees. ARA-like includes the inherent optimization of all on-
device systems but excludes the new optimizations in §4.5.3.

Scenario-driven methodology. We conduct our evaluation by enacting the scenario from §4.3.1.
An advertiser (Nike) runs ad campaigns and repeatedly measures their efficacy. Each time a cus-
tomer purchases quantity C of a product, Nike requests an attribution report, specifying the relevant
ad campaigns. Nike requests reports over some attribution window and uses last-touch attribution.
If no relevant impression is found, the report value is 0; otherwise, it is C. Nike batches reports
and submits them to the aggregation service for a DP summation query using the Laplace mech-
anism. In our experiments, Nike repeatedly performs queries on report batches of size B, which
varies by dataset. Once B reports are gathered, Nike runs its query. This is repeated over time
as more batches of B reports are gathered. This is also repeated for each product, e.g., 10 in the
microbenchmark/PATCG and a variable number in Criteo.

When requesting an attribution report for a conversion, Nike must specify the requested privacy
budget, € — the same value for all reports in a batch. Since the MPC uses the Laplace mechanism
to ensure e-DP, Nike selects € to achieve acceptable accuracy. We assume Nike chooses € in an
attempt to keep query error within 5% (a = 0.05) of the true value with 99% probability (8 = 0.01),
which corresponds to roughly 0.02 RMSRE. The formula for € is: € = Aln(1/8)/(a - B-¢), where
A is the maximum value for C and ¢ is Nike’s rough estimate of the average C.

Our specific method is: we run repeated, single-advertiser summation queries on fixed-size
batches of attribution reports, using last-touch attribution and a privacy budget calibrated as de-
scribed above. Default parameters include: a 7-day epoch size, a 30-day attribution window, and a
global privacy budget per epoch of €5 = 1.

Microbenchmark dataset. To methodically evaluate Cookie Monster, under a range of condi-
tions, more or less favorable to our optimizations, we create a synthetic dataset with 40,000 con-
versions across 10 products over 120 days. We expose two knobs: Knobl, the user participation
rate per query, determines the fraction of users who are assigned conversions relevant for a par-

ticular query; Knob2, the number of impressions per user per day. These knobs impact budget

106

allocation across IPA-like, ARA-like, and Cookie Monster. Lower Knobl increases opportuni-
ties for fine-grained accounting in ARA-like and Cookie Monster. Lower Knob2 allows Cookie
Monster to conserve privacy by not deducting from epochs with no relevant impressions, a key
optimization over ARA-like.

PATCG dataset. To evaluate Cookie Monster under more realistic conditions, we resort to the
PATCG and Criteo datasets. PATCG is a synthetic dataset released by the namesake W3C com-
munity group [134], which contains 24M conversions from a single advertiser over 30 days. This
dataset represents a large advertiser, with only 1% of conversions attributed to impressions. There
are 16M distinct users, and each user sees an average of 3.2 impressions. Users who convert take
part in 1.5 conversions on average.

Criteo dataset. The Criteo dataset [135] is sampled from a 90-day log of live ad impressions and
conversions recorded by the Criteo ad-tech. The dataset includes data from 292 advertisers with
12M impression records and 1.3M conversion records. There are 10M unique users. The dataset
provides opportunities for evaluating Cookie Monster in some additional dimensions compared
to PATCG and the microbenchmark. In particular, the Criteo dataset contains data from multiple
advertisers of widely distinct sizes, i.e., having a wide range in terms of number of impressions
(1-2.6M impressions) and conversions per advertiser (0—478k conversions). However, since the
dataset is heavily subsampled, missing many impressions, we also evaluate Cookie Monster on
augmented versions of this dataset, in which we add synthetic impressions to compensate for the

missing impressions that might otherwise favor Cookie Monster’s optimizations.

4.7.2 Microbenchmark Evaluation (Q1)

We use the microbenchmark to evaluate the impact of individual-sensitivity optimizations on
privacy budget consumption across a range of controlled workloads (question Q1).
Varying user participation rate per query (knobl). We first vary the user participation rate
per query. With a default batch size of 2,000 reports and 10 products (queried twice, totaling 20

queries), we create 40,000 conversions. Knobl controls how these conversions are assigned to

107

Cookie Monster ARA-like (on-device) IPA-like (off-device)

o
-3

o
o
o
o

°
S

max budget
N
Y

avg. budget (log)
avg. budget (log)
max budget

e
N

0.001 0.01 0.1 1.0 0.001 0.01 0.1 1.0 0.001 0.01 0.1 1.0 0.001 0.0

. . 0.1 1.0
fraction of users per query fraction of users per query user impressions per day user impressions per da

(a) Avg. budget varying knob1 (b) Max. budget varying knob1 (c) Avg. budget varying knob2 (d) Max. budget varying knob2
Fig. 4.4: Budget consumption on the microbenchmark. (a) and (b) show average and maximum
budget consumption across all device-epochs, respectively, as a function of the fraction of users
that participate per query (knobl); value of knob2 is constant 0.1. (c) and (d) show the same
metrics as a function of user impressions per day (knob2); value of knobl is constant 0.1.

users, indirectly determining the total number of users. A lower knobl favors on-device budget-
ing, as it spreads the 40,000 conversions across more users, creating more privacy filters for the
advertiser. For example, with knob1 = 1, each user participates in all 20 query batches, requiring
a minimum of 2,000 users, while knobl = 0.001 generates 2M users. In the PATCG dataset, users
convert with a 0.05 daily rate, corresponding to knobl = 0.1, which we use as default in other
experiments.

Fig. 4.4a and 4.4b show the average and maximum budget consumption across all device-
epochs requested through the 20 queries. Qualitatively, the average budget consumption is a much
more useful metric to assess the efficiency of the three systems, but we include the maximum
because it reduces IDP guarantees to standard DP guarantees, thereby providing a more apples-
to-apples comparison between on-device and off-device budgeting. Recall that [PA-like does not
distribute budget consumption across devices but has a centralized privacy filter for each epoch,
from which it deducts budget upon executing each query. As a result, increasing user participation
per query (knobl) does not impact its budget consumption, which is always higher than the other
methods’. Cookie Monster consistently consumes the least budget due to its optimizations, with
greater improvements as user participation increases (lower knobl), since more device-epochs
lack relevant impressions and don’t deduct budget. Even under the max budget metric, on-device
systems outperform IPA-like, with Cookie Monster being the most efficient.

Varying the number of impressions per user per day (knob2). We now fix knobl at 0.1 and

108

+ Cookie Monster + ARA-like (on-device) - IPA-like (off-device)

o
w

0.61 O Cookie Monster
@ ARA-like (on-device)
@ IPA-like (off-device)

soveor
eostt+®

o

avg. budget
c o o
o N » [+

RMSRE query error
RMSRE query error

- T ? $
0 T 3/80 ? 3/80 % 3/80 % 2/80 % 1/8C
20 40 60 80 20 40 60 80 100 1 7 14 21 30

of queries submitted over time % of queries # of days per epoch

o

(a) Avg. budget consumed across all device- (b) CDF of RMSRE (c) RMSRE as a function of epoch length
epochs

Fig. 4.5: Budget consumption and query accuracy on the PATCG dataset. (a) Average budget
consumption across all device-epochs as a function of the number of queries submitted by the
advertiser. (b) CDF of RMSRE with a 7-day epoch. (c) RMSRE median (horizontal lines), first
and third quartiles (boxes), and max/min (top/bottom range markers) as epoch length increases.

vary the number of impressions per user per day (knob2). In PATCG, users see an average of 3.22
ads over 30 days, giving knob2 a value of 0.1. Fig. 4.4c and 4.4d confirm that Cookie Monster’s
optimizations are most effective when users have fewer impressions.

Thus, Cookie Monster reduces budget consumption compared to baselines, especially when

budget is spread across many users and when users have fewer impressions.

4.7.3 PATCG Evaluation (Q1, Q2)

We use the PATCG dataset to evaluate Cookie Monster’s impact on budget consumption (Q1)
and query accuracy (Q2). This dataset links impressions and conversions to attributes, with values
uniformly sampled from O to 9, representing 10 potential products. Nike queries each product
eight times over the four months spanning the dataset, totaling 80 queries with batch sizes between
280,000 and 303,009 reports. Large batch sizes accommodate the low attribution rate (1% of
impressions relevant to conversions), assuming Nike adjusts batch sizes accordingly.

Fig. 4.5a illustrates the average privacy budget consumed by each system as 80 queries are
submitted for execution by the advertiser. The x-axis represents the order of queries, with points
indicating budget consumption. IPA-like executes only a small fraction of queries (3.75%) due to
its coarse-grained, population-level accounting, leading to early budget depletion. ARA-like and
Cookie Monster, with finer-grained, individual-level accounting, execute all queries and resulting

in smoother and lower average budget consumption. Cookie Monster shows up to 206 times lower

109

average budget consumption compared to ARA-like, highlighting the benefits of its individual-
sensitivity optimizations.

Next, we assess query accuracy (Q2). On-device systems (ARA-like and Cookie Monster) hide
budgets when depleted, which can affect query accuracy, while IPA-like explicitly rejects queries
with exhausted budgets. As in our experiments, privacy budgets are set to aim for high accuracy
in the Laplace mechanism, we expect IPA’s executed queries to have errors within the 0.02 mark.
In contrast, ARA and Cookie Monster may incur additional errors when epochs run out of budget,
leading to nullified or incomplete reports.

Fig. 4.5b shows the CDF of root mean square relative error (RMSRE), defined as

VE[(M(D) — Q(D))2/Q(D)?] for an estimate M(D) of the query output Q(D). This metric
captures both Laplace-induced and IDP-bias-induced errors. The CDF shows query errors for
each system. IPA-like’s line ends at 3.75% of queries, aligning with its budget constraints but
maintaining within the 5% error mark. Cookie Monster consistently exhibits lower errors than
ARA-like due to its budget conservation, resulting in fewer nullified reports and reduced bias. This
is true without any bias mitigation strategies. In §4.7.5, we show that even with bias measurement
running alongside every query, Cookie Monster still outperforms ARA-like (which has no bias
measurement) in terms of budget consumption and query accuracy.

Finally, we explore how epoch length affects performance. Longer epochs strengthen device-
epoch privacy guarantees but slow budget refreshing, leading to more query rejections in IPA and
increased bias in on-device systems without mitigation. Fig. 4.5c¢ evaluates RMSRE measures
(median, first and third quartiles, and range) as epoch length varies. IPA-like’s query execution
drops to 1.25% at one-month epochs, while Cookie Monster and ARA-like complete all queries but
with increasing errors. Cookie Monster’s budget conservation results in fewer altered or nullified

reports, maintaining lower error degradation compared to ARA-like as epochs grow.

110

— Cookie Monster - ARA-like (on-device) - - IPA-like (off-device) - +3 impressions/conversion
& +6 impressions/conversion

0.8+ L L 0.8
o 0.2 e 0.2 - +9 impressionsjcnnyersion
T 06 o 0.15 G 0.15 T 06
g 2" 2 g
3 04 2 o1 2 01 3 04
o w m o
2 02 % 0.05 % 0.05 @ l;é 1;;:. ;% ;: 2 02
= =
T T T 1 o 0 T T T T 1 =4 0 T T T T T T
20 40 60 80 100 20 40 60 80 100 1 14 30 60 20 40 60 80 100
% of devices (for all queriers) % of queries # of days per epoch % of devices (for all queriers)
(a) CDF of budget on Criteo. (b) CDF of RMSRE. (¢) RMSRE as function of epoch (d) CDF of budget on Criteo++.

length.

Fig. 4.6: Budget consumption and query accuracy on Criteo. (a) CDF of per-device average
budget consumption across epochs for all devices and advertisers. (b) CDF of RMSREs for a
7-day epoch. (c) RMSRE metrics with varying epoch length (see Fig. 4.5¢ for format). (d) The
same CDF as in (a), but for Criteo++, showing the impact of synthetic impression augmentation
on Cookie Monster’s performance.

4.7.4 Criteo Evaluation (Q1, Q2)

The Criteo dataset enables evaluation across diverse advertisers. It includes 1.3M conversions
from 292 advertisers, with conversions ranging from O to 478k per advertiser. To achieve mean-
ingful accuracy under DP, an advertiser needs a minimum number of reports. We set this minimum
to 350, allowing us to formulate at least one query for 109 advertisers. Advertisers with more than
350 conversions wait to accumulate 350 reports per batch for each query, resulting in 898 queries
across these advertisers using the attribute “product-category-3” as a product ID.

Fig. 4.6a shows a CDF of per-device average budget consumption across epochs, where the
distribution covers all devices and all advertisers; that is, there is a single data point corresponding
to each device and advertiser pair, which indicates the average consumption across epochs within
an advertiser’s filters on a given device by the end of the workload. Lower values indicate better
performance. Cookie Monster conserves the most privacy budget, with 95% of device-advertiser
pairs having more capacity left compared to both baselines.

Fig. 4.6b presents the CDF of RMSREs for all 898 queries. IPA-like completes only a small
fraction of queries but with good accuracy. ARA-like and Cookie Monster accept all queries,
potentially at the expense of higher error; however, Cookie Monster’s error distribution remains

better than ARA-like’s, with errors within IPA-like’s range for up to 96% of queries. This results

111

- = IPA-like (off-device) - ARA-like (on-device) — Cookie Monster w/o bias measurement — Cookie Monster w/ bias measurement
Cookie Monster w/ bias measurement (estimation of error)

2
1

100% 38% 48%
. 1 I l i
0.1 0.2

2
N/A 0.02 0.05

0.1
5

5%

avg. budget

B
2
0.01

RMSRE query error (log)
RMSRE query error (log)

>
8

20 40 60 80
% of queries Error estimation cutoff

(a) Avg. budget consumed (b) CDF of RMSRE (c) RMSRE as function of error estimation cutoff.

Fig. 4.7: Budget consumption and query accuracy with bias measurement on the microbench-
mark. (a) Average budget consumed across all device-epochs. (b) CDF of true RMSRE for
executed queries, alongside Cookie Monster’s RMSRE estimation from bias measurement (light-
purple line). (c) Quartiles of true RMSRE, where queries with error estimate above a given cutoff
are rejected by Cookie Monster with bias measurement.

from Cookie Monster’s optimizations that conserve budget and avoid introducing bias.

Fig. 4.6c examines how RMSRE varies with epoch length. Longer epochs increase contention
on per-epoch filters. Despite this, Cookie Monster’s optimizations show substantial benefits, with
minimal RMSRE increase (25% increase from 1-day to 60-day epoch for median RMSRE). Al-
though maximum RMSRE increases with epoch length, Cookie Monster’s performance remains
superior to ARA-like.

Recall that the Criteo dataset is heavily subsampled, so there is the possibility that missing im-
pressions may amplify the benefit of our optimizations. To assess Cookie Monster’s performance
in scenarios with more relevant impressions, we augment the Criteo dataset with synthetic impres-
sions for each conversion. The results, shown in Fig. 4.6d, compare the CDFs of budget consump-
tion with varying augmentation levels. The behavior of IPA-like and ARA-like remains unchanged
by augmentation, as they do not optimize for missing relevant impressions. For Cookie Monster,
budget efficiency decreases as more synthetic impressions are added, approaching ARA-like’s per-
formance at 9 extra impressions per conversion. The impressions are uniformly distributed across
the attribution window, ensuring that most epochs have relevant impressions for most conversions,

so Cookie Monster’s optimization is eliminated and its behavior follows ARA-like’s.

112

477.5 Bias Measurement (Q3)

We evaluate Cookie Monster’s bias measurement technique using our microbenchmark with
default knob settings (0.1) and an increased query load to measure significant bias. Specifically,
we use 60 days and repeat each query 40 times.

Fig. 4.7a shows the budget overhead incurred by bias measurement. The bias measurement’s
counts are scaled to have 10% the sensitivity of the original query, so the overall sensitivity of
the query/side-query combination increases by 10%. The average consumed budget goes from
0.36 without bias measurement to 0.43 with bias measurement; this is more than a 10% increase
since some epochs that originally paid zero budget through our IDP optimization, now pay for bias
counts.

Fig. 4.7b shows the CDF of RMSREs across all 400 queries, with a log scale on the y-axis
to highlight smaller differences among Cookie Monster variants compared to ARA. Due to the
heavy query load, IPA executes only 5% of the queries and ARA ultimately returns empty reports,
resulting in a relative error of 1. Cookie Monster without bias measurement plateaus at 0.2 error.
Cookie Monster with bias measurement shows a similar trend to Cookie Monster without it, albeit
with increased error, because the higher sensitivity of the query leads additional epochs to run
out of budget. However, the bias measurements let queriers compute an estimate of the error,
which, although noisy (as it is also differentially private), generally serves as an upper bound on
true RMSRE. Queriers can compare this estimate to a predetermined cutoff and reject queries
exceeding it. Fig. 4.7c¢ displays the quartiles of true RMSREs after rejecting queries based on
estimated RMSRE cutoffs. For instance, using a cutoff of 0.05 enables queriers to limit bias,
achieving a maximum error of 0.04 (down from 0.21), but only accepting 30% of the queries.
Rejected queries still consume budget, as rejection is a post-processing step.

Thus, even with rudimentary bias measurement, Cookie Monster offers substantial benefits
over IPA while maintaining lower real error than ARA. While we validated our technique on a
microbenchmark with increased query load, applying it to real-life datasets remains an open chal-

lenge. Future work could enhance our technique by scheduling bias measurements or using DP

113

threshold comparison mechanisms.

4.8 Related Work

DP systems. Most DP systems operate in the centralized-DP model, where a trusted curator runs
queries using global sensitivity [136]. Some implement fine-grained accounting through parallel
composition [137, 9, 8, 10], a coarse form of individual DP (IDP) that lacks optimizations like
those in Cookie Monster. Others function in the local-DP model, where devices randomize their
data locally [138], and therefore inherently do on-device budgeting but have higher utility costs.
Distributed systems like [98, 139] emulate the central model with cryptographic constructions; like
IPA, they maintain a single privacy filter, not leveraging IDP to conserve budget. [140] uses the
shuffle model [141] to combine local randomization with a minimal trusted party. Cookie Monster
operates in the central model with on-device budgeting and uses an IDP formalization to enable
new optimizations.
Private ads measurement. Several proposals exist for private ad measurement systems. Apple’s
PCM [142] relies on entropy limits for privacy. Meta and Mozilla’s IPA [143] uses centralized bud-
geting, while Google’s ARA [122] and Apple’s PAM [124] utilize on-device budgeting. ARA has
primarily focused on optimizing in-query budget and utility. [144] optimizes a single vector-valued
hierarchical query, whereas [145] assumes a simplified ARA with off-device impression-level DP
guarantees, efficiently bounding each impression’s contribution for queries known upfront. [146]
offers a framework for attribution logic and DP neighborhood relations, proposing clipping strate-
gies for bounding global sensitivity. Our work optimizes on-device budgeting across queries, using
tighter individual sensitivity bounds. Our method is agnostic to how these bounds are enforced,
potentially benefiting from clipping algorithms [144, 145, 146].

IDP was introduced in the centralized-DP setting, where a trusted curator manages individual
budgets and leverages individual sensitivity to optimize privacy accounting [126, 131]. IDP is used
for SQL-like queries and gradient descent. The literature emphasizes the need to keep individual

budgets private. [132] studies the release of DP aggregates over these budgets while [126] notes

114

that out-of-budget records must be dropped silently, leaving bias analysis for future work.

4.9 Conclusion

Web advertising is at a crossroads, with a unique opportunity to enhance online privacy through
new, privacy-preserving APIs from major browser vendors. We show that a novel individual DP
formulation can significantly improve privacy budgeting in on-device systems. However, further
progress is needed in query support, error management, and scalability. Our paper provides foun-

dational insights and formal analysis to guide future research and industry collaboration.

115

Chapter 5: Dances with Locks: An Adaptive Commit Protocol for

Distributed Transactions

5.1 Overview

Strict Two-Phase Locking (2PL) combined with Two-Phase Commit (2PC) remains the stan-
dard approach for ensuring strict serializability and atomicity in distributed transactions. However,
its conservative strategy of holding locks throughout the full duration of the commit process ampli-
fies the contention footprint of transactions, limiting throughput and latency under high-contention
workloads. Relaxed variants, such as Early Lock Release (ELR), improve concurrency through
pipelining: by releasing locks earlier in the commit protocol, subsequent transactions can acquire
locks and proceed before prior commits complete. However, this introduces commit-time depen-
dencies that require additional coordination and risk cascading aborts. No single protocol excels
across all workload conditions and resource availability, yet most distributed systems hardcode one
fixed strategy — designed for specific assumptions while sacrificing generality.

This paper introduces Sangria, a novel distributed commit protocol that dynamically adapts
its commit strategy to exploit the complementary strengths of both conservative and relaxed ap-
proaches. Unlike traditional designs that enforce a single, fixed commit strategy across the entire
system, Sangria provides fine-grained adaptability: each participant involved in the transaction
— typically corresponding to an accessed data item — independently adjusts its commit behav-
ior based on its local contention and general resource availability. By intelligently balancing be-
tween conservative and relaxed commit modes at runtime, Sangria dynamically optimizes perfor-
mance under varying conditions while preserving the strong consistency guarantees inherent to
each mode. This work opens the door to a more flexible, workload-aware approach to distributed

transaction management — where transactions no longer commit rigidly, but instead dance to the

116

rhythm of the workload.

5.2 Introduction

Distributed transactions provide a powerful abstraction for simplifying application logic in dis-
tributed systems that operate on shared mutable state. By adhering to the ACID properties —
Atomicity, Consistency, Isolation, and Durability — distributed transaction protocols allow appli-
cations to reason about distributed operations as if they execute atomically and in isolation, even
in the presence of failures and concurrency. Strict serializability [147] is widely regarded as the
strongest isolation and consistency guarantee, ensuring that the outcome of concurrent transactions
is equivalent to some serial execution that respects real-time order.

Enforcing strict serializability in distributed settings often relies on combining Strict Two-
Phase Locking [148] (2PL) for concurrency control with Two-Phase Commit [149] (2PC) for
atomic commitment across participants — a combination we hereafter refer to as Strict-2PC. 2PL
enforces serializability by holding locks across all accessed data items until the transaction’s com-
mit decision is finalized, while 2PC ensures that all participants either commit or abort atomically,
preserving atomicity. While Strict-2PC provides strong correctness guarantees, its conservative
nature forces transactions to hold locks across the entire commit process, including under net-
work delays and coordination rounds, resulting in increased contention footprints and degraded
performance under high-contention workloads. While we focus on 2PL in this paper, optimistic
concurrency control (OCC) schemes are also not immune, and often perform even worse under
high contention [150, 151, 152].

To address these limitations, various relaxations of Strict-2PC have been explored, aiming to
reduce lock contention by decoupling the time spent holding locks from commit coordination. One
such approach [153, 154, 155] is to apply Early Lock Release [156, 157] (ELR) to 2PC, which we
hereafter refer to as Pipelined-2PC. In Pipelined-2PC, locks are released early in the commit pro-
tocol, allowing subsequent transactions to acquire locks earlier and pipeline their execution. This

approach takes advantage of the fact that after a transaction T finishes the execution phase, it will

117

Pipelined-2PC

1.00

S
= 9]

«
0.75 =)
8
c c
o 050 3
= S
cC <
9 -025 F
c ¢ 2
(@) =) o
O T -0.00 3
T ¢ o
© € c
o --0.25 F
~ ©
= g
§ -0.50 =
€
~075 ©
= | =

o

~ - . -1.00
high medium low Strict-PC

Resolver Capacity

Fig. 5.1: Heatmap illustrating the regimes where each protocol is most effective as a function of
workload contention (vertical axis) and Resolver capacity (horizontal axis). Red regions indicate
scenarios where pipelining (Pipelined-2PC) outperforms Strict-2PC, while blue regions indicate
the opposite. The color intensity reflects the magnitude of the performance advantage.

not acquire more locks, so holding locks after this point has no value from a 2PL perspective.
Furthermore, at this point, T is guaranteed to not abort due to concurrency control or application
logic, so the only reason it aborts is due to server failure, which should be rare. By releasing its
locks at the start of 2PC, T avoids blocking other transactions that access T’s writeset while T
is running its high-latency commit process. While this approach improves concurrency, it intro-
duces commit-time dependencies between transactions: if a transaction releases its locks early but
subsequently aborts, any dependent transactions that acquired conflicting locks before the com-
mit decision will also need to be aborted — a phenomenon known as cascading aborts. These
dependencies introduce two fundamental challenges: (1) pipeline stalls, where commit dependen-
cies must be resolved before transactions can safely commit, limiting the benefits of pipelining;
and (2) the need for distributed dependency tracking, which requires additional coordination and

bookkeeping across participants.

118

In this paper, we present a novel implementation of Pipelined-2PC that addresses these chal-
lenges by introducing a centralized coordination entity called the Resolver. The Resolver maintains
a global dependency graph of in-flight transactions and orchestrates commit resolution on behalf
of participants. This design simplifies dependency management by offloading tracking to a cen-
tralized entity, and enables an important performance optimization: batching commits. As depen-
dent transactions queue up waiting for their predecessors to commit, the Resolver groups multiple
ready-to-commit transactions into batches, reducing commit-time overhead by amortizing the cost
of durable storage writes across multiple transactions. In effect, this enables a distributed form of
group commit [158].

While Pipelined-2PC with the Resolver significantly improves concurrency under many work-
loads, the Resolver has limited resources so there are scenarios where it can become a bottleneck
itself. Always involving the Resolver on every transaction would therefore impose an overall scala-
bility limit on the system, which would not be ideal for low contention workloads. A big challenge
is that the level of contention within the same database varies over time and over different records,
and is often unpredictable [159, 160, 155]. Figure 5.1 sketches the interaction between two key
dimensions that influence commit protocol performance: (i) the level of workload contention, and
(1) the capacity of the centralized Resolver responsible for dependency tracking and commit co-
ordination in Pipelined-2PC. This heatmap visualizes the regimes where each protocol is most
effective and is derived from a set of experiments presented in the evaluation section, which sys-
tematically explore performance across varying contention levels and Resolver capacities. Red
regions indicate scenarios where pipelining is more beneficial, while blue regions highlight where
Strict-2PC performs better. The intensity of each color reflects the magnitude of the performance
advantage for each protocol. We define it as the normalized throughput advantage i.e. the normal-
ized difference between the throughput of Pipelined-2PC and that of Strict-2PC under the same
workload configuration — a value closer to 1 indicates a performance gain relative to Strict-2PC,
while a value closer to -1 indicates a loss.

As contention increases, pipelining becomes increasingly advantageous. By enabling early

119

lock release and overlapping prepare phases across dependent transactions, it improves concur-
rency and reduces idle time. However, these benefits hinge on the Resolver’s capacity to efficiently
manage dependency tracking. When the Resolver is heavily loaded — due to background traffic,
system resource contention, or long dependency chains (low capacity) — its coordination overhead
can offset pipelining’s gains.

This observation motivates our main contribution: Sangria, an adaptive commit protocol that
dynamically switches between Strict-2PC and Pipelined-2PC based on the workload. In our design,
each participant independently chooses whether to release locks early (enabling pipelining) or hold
locks conservatively, based on its own observed workload contention and the Resolver’s capacity.
The Resolver remains responsible for dependency tracking and group commits, but its involvement
is reduced when participants opportunistically bypass pipelining under favorable conditions. This
design allows the system to automatically balance between aggressive pipelining and conservative
commit behavior, achieving consistently high performance across diverse workload patterns even
under heavy contention or centralized Resolver pressure.

Enabling this adaptive behavior required extending the 2PC protocol itself. We introduce
lightweight coordination enhancements where the coordinator piggybacks information about the
current Resolver load and contention onto the Prepare requests. Participants use this information
to decide whether to release locks early or continue to hold them. In turn, participants piggyback
both their locking decisions and any local dependency information onto the corresponding Prepare
responses, informing the coordinator of their chosen commit behavior and dependency state. This
information allows the coordinator to make transaction-specific decisions on whether to delegate
commit processing to the Resolver, notify it asynchronously of the commit decision, or bypass
it altogether. These protocol-level extensions support different policies to guide adaptation deci-
sions, allowing the system to flexibly respond to changing workload and resource dynamics while
preserving the correctness guarantees of the underlying protocols.

In summary, this paper makes the following contributions:

* We present a novel Pipelined-2PC protocol with a centralized Resolver that addresses depen-

120

dency tracking challenges and enables efficient commit batching.

* We introduce an adaptive commit protocol that allows each participant to independently make
early lock release decisions based on its local contention and Resolver load, combining the

strengths of Strict-2PC and Pipelined-2PC commit strategies.

* We evaluate our system under a wide range of workload patterns and Resolver capacities, show-
ing that our adaptive design consistently outperforms fixed commit strategies, providing better

throughput, lower latency, and increased robustness to contention and resource imbalance.

The rest of the paper is organized as follows: Section 5.3 provides background on distributed
commit protocols. Section 5.4 describes the design of our Resolver-based Pipelined-2PC imple-
mentation. Section 5.5 presents our adaptive commit protocol. Section 5.6 evaluates our system
experimentally. Section 5.7 discusses related work, Section 5.8 discusses future work, and Section

5.9 concludes.

5.3 Background

This section provides an overview of the two foundational commit protocols: Strict-2PC and
Pipelined-2PC. They form the basis of the adaptive protocol introduced in this paper. Figure 5.2
illustrates their behavior using an example: Figure 5.2(a) shows the execution under Strict-2PC,
while Figure 5.2(b) presents the same transaction sequence under Pipelined-2PC.

The example involves two write-only transactions, 77 and 73, executing concurrently across
four participants, P through P4, each corresponding to a data item accessed by the transactions.
Transaction 77 writes data from Py, P, and P3, while 7, operates on P3 and P4. We refer to the
initial phase where transactions stage writes as the transaction logic. In the figure, solid-colored
regions indicate the period during which locks are held, while dashed-colored regions denote pe-
riods after locks are released. Although both transactions are submitted concurrently, 77 arrives
first and acquires exclusive locks on Py, P;, and P3, thereby blocking 75 on P3. This introduces a

dependency between the two transactions. However, 7, can proceed with its transaction logic on

121

P X PR

P, P, P; P, P, P, 3 P,
TX logic ‘ TX logic TX logic TX logic TXlogic | [TXlogic TXlogic | | TXlogic
)
Prepare Prepare Prepare Unlock | Prepare ‘ Prepare = Stall
S | mtogic
Log Prepare Log Prepare Log Prepare LogPrepare Log Prepare E
to WAL to WAL to WAL to WAL to WAL o
(disk write) (disk write) (disk write) (disk vrite) (disk write) e § it Untock
0 Log Prepare
Stall o to.WAL
Commit Commit Commit Commit Commit E ek mte)
Q £
Log Commit Log Commit Log Commit g Log Commit Log Commit Q
to WAL to WAL to WAL T to WAL to WAL O | stall Stall
(disk write) (disk write) (disk write) 3 (disk write) (disk write) oo
B e
Unlock =
TX logic g : :
=3 Commit Commit
e
Prepare Prepare E Log Comimit Log Cormit
to WAL 10 WAL
e e Log Prepare (disk write) (disk wite)
to WAL to WAL
(disk write) (disk write)
Commit Commit
Log Commit Log Commit
to WAL to WAL
(disk write) (disk write)
Unlock
(a) Strict-2PC (b) Pipelined-2PC

Fig. 5.2: Strict 2PC vs Pipelined 2PC. (a) In Strict 2PC, locks are held throughout the entire
commit protocol, resulting in long lock hold times and increased contention. (b) In Pipelined 2PC,
locks are released earlier — immediately after the prepare record is appended to the WAL buffer
— allowing subsequent transactions to proceed sooner and reducing contention, but introducing
commit-time dependencies that require additional coordination to ensure correctness.

P4, where there are no conflicts. Note that each transaction’s write operations are applied indepen-
dently across keys, allowing them to proceed in parallel on different participants.

Strict-2PC. In Strict-2PC (Figure 5.2(a)), the coordinator initiates the execution of transaction 77,
which acquires locks on each accessed participant (P, P», P3) according to strict 2PL to execute
its transaction logic. These locks are retained throughout the entire transaction lifecycle, spanning
both execution and commit phases, thereby ensuring strict serializability. Once 77 completes its
transaction logic and the client requests to commit, the coordinator initiates the prepare phase by
sending prepare requests to all participants. Each participant validates local constraints, ensures
durability by writing a prepare record to persistent storage (i.e., Write Ahead Log or WAL), and
responds with either a vote-commit or vote-abort. Importantly, locks remain held after voting to
commit. The coordinator waits for all participants to vote before proceeding to the commit phase.

If all participants vote to commit, the coordinator proceeds to the commit phase, logs the commit

122

decision, and sends commit messages to participants. Each participant writes a commit record
to WAL, applies the committed changes to the local storage and, after completing the commit
(shown at the “Unlock™ point), releases its locks. This conservative design results in long lock
hold durations, as shown by the solid-colored regions in Figure 5.2(a), which reflect the total
contention footprint.

While Strict-2PC guarantees atomicity and strict serializability, the cumulative time locks are
held — even after local work is done — limits concurrency, especially as commit coordination
latency grows. This effect is clearly seen for 75: while 75 can process its transaction logic on
P4, it remains blocked on P3 until 77 fully completes its commit phase and releases the lock. As a
result, 7>’s contention footprint extends across much of 77’s commit lifecycle, limiting concurrency

despite potential opportunities for overlap.

Pipelined-2PC. In Pipelined-2PC (Figure 5.2(b)), the protocol modifies the commit sequence to
reduce lock holding times by allowing participants to release locks earlier in the commit process.
As before, the coordinator initiates execution for 77, acquiring locks on participants Py, P;, and P3
during the transaction logic phase. Once transaction logic completes, the prepare phase begins as
in Strict-2PC, with prepare requests sent to all participants.

However, the key difference is that participants may release their locks immediately after ap-
pending the prepare record to an in-memory WAL buffer — before the record is durably persisted
to disk. This early lock release enables subsequent transactions to acquire locks and proceed with-
out waiting for the preceding transaction to commit. In the example, once P3 appends the prepare
record for 77 to its WAL buffer, it releases its lock, allowing 7, to acquire the lock on P3 and begin
its transaction logic and prepare phase. The actual persistence to disk happens asynchronously,
preserving the order of operations while enabling higher concurrency.

Despite this improved concurrency, early lock release introduces commit-time dependencies:
because 75 acquired locks on P3 before 77 committed, 75’s commit correctness now depends on 77
successfully committing. If 77 were to abort after releasing locks, any dependent transaction like

T, would also need to abort to preserve correctness — a phenomenon known as cascading aborts.

123

To manage these dependencies, additional coordination is required during commit processing.
After it receives all prepare responses, the coordinator determines the commit outcome. As
before, if all participants vote to commit, commit records are written to WAL and changes are
finalized. The solid and dashed regions in Figure 5.2(b) show that, compared to Strict-2PC, lock
hold durations are significantly shortened, allowing 7, to proceed earlier and reducing overall
contention footprint — at the cost of introducing dependency tracking and potential cascading

aborts.

5.4 Dependency Tracking with Resolver

Our proposed Pipelined-2PC protocol employs a centralized Resolver component to manage
transaction dependencies and enforce correct commit ordering. Figure 5.3 depicts the architectural
design and communication patterns among the Resolver, transaction coordinator, and participants.

At its core, the Resolver maintains a dependency graph that tracks unresolved dependencies
among in-flight transactions. Each transaction is represented as a node, and each directed edge
indicates a dependency relationship — typically arising from conflicting accesses to one or more
shared participants. The Resolver maintains a per-participant commit queue, where each queue
holds transactions that are eligible to commit at that participant. A transaction becomes eligible
when all of its dependencies are resolved. A dependency is considered resolved if the transaction
it depends on has either already committed or was newly unblocked in the current resolution pass.
By resolution pass, we are referring to the cascade of unblocks triggered by a transaction commit:
its direct dependents may become eligible, which in turn may unblock their dependents, and so
on. This recursive unblocking process is implemented in Algorithm 1 (lines 24-28), where each
resolved transaction is enqueued at the corresponding participant’s commit queue in dependency
order.

This design enables the Resolver to coordinate group commits efficiently while preserving
commit-order consistency. For each transaction, the Resolver logs its commit intent to durable

storage and tracks which participant queues it has been inserted into. Once all relevant participants

124

Coordinator

A A

1a. Prepare
2a. Prepared

1b. Prepare
2b. Prepared

v v

P;: (21,30]

[P1 :(0,10] } { }
[Ps: (51,60] }
{ J

[Pz: (31,40] }
[Pg: (61,70]]

{P4: (11,20] }
[Ps: (41,50] }
[Pe: (71,80]]

Po: (81,90]

3. Delegate Commit
6. Commit Done

Key-Value
Service

5a. [Committed
4b) Commit
5b, Committed

/ Resolver \

P
Dependency
- P:: TX X, Graph
§ - J
L | €7 N
> O
I| P ™ X
w
>‘\ J/
)
©
&') 4 N\

> TXs X, /

Fig. 5.3: Resolver architecture showing communication between resolver, coordinator, and partic-
ipants

,/
U
s

\

125

Algorithm 3 Resolver API

1: function COMMITONBEHALF(txn, dependencies)

2 Create a response channel for 7xn

3 if dependencies not empty then

4 Add rxn and dependencies to dependency graph
5: else
6
7
8
9

Add rxn to all its participants’ queues
Call TRIGGERCOMMIT
Wait for txn’s commit on response channel

. function TRIGGERCOMMIT

10: for each participant with non-empty queue do

11: txns < remove all txns from participant.queue

12: log commit decision for txns if not already logged
13: Send commit msg with txns to participant

14: Wait for all participants to respond

15: /I Collect txns whose all participants have committed

16: done_txns <« get transactions fully completed

17: for each txn in done_txns do

18: Notify through txn’s response channel

19: Call REGISTERCOMMITTEDTXS on done_txns

20: function REGISTERCOMMITTEDTXS(txns)

21: worklist « txns

22: while worklist not empty do

23: Pop txn from worklist

24: for each dependent of txn do

25: Remove dependency edge (txn — dependent)
26: if dependent has no remaining dependencies then
27: Add dependent to worklist

28: Add dependent to all its participants’ queues
29: Call TRIGGERCOMMIT

have committed their respective queued transactions, the Resolver notifies the coordinator that the
transaction is fully committed.

The Resolver exposes the following API as shown in Algorithm 3. The commitOnBehalf
function is called by coordinators to delegate commit coordination to the Resolver. When invoked,
it first creates a response channel for the transaction to establish communication with the coor-
dinator for reporting the final commit status. If no dependencies are detected, the transaction is

immediately added to all its participants’ queues and the Resolver triggers a commit by calling

126

triggerCommit. Otherwise, the transaction and its dependencies are added to the dependency
graph. The coordinator then waits for the transaction’s commit status on the response channel.

The triggerCommit internal function orchestrates the group commit process by extracting
ready transactions from participant queues and initiating their commit phase. It sends commit
messages — each containing a batch of transactions — to the appropriate participants and waits
for their responses. As participants reply, the Resolver identifies transactions whose all participants
have committed. For each such transaction, it notifies the original coordinator via the transaction’s
pre-established response channel. Finally, it invokes registerCommittedTXs to process the
completed transactions, which updates the dependency graph and may trigger additional commits
for newly unblocked transactions.

The registerCommittedTXs function updates the dependency graph when transactions
complete their commit phase. It can be invoked internally by the Resolver when it coordinates a
commit to completion, or externally by coordinators that bypassed the Resolver for transactions
with no active dependencies. Upon receiving a list of committed transactions, the Resolver re-
moves them from the dependency graph and iteratively identifies and processes newly unblocked
transactions, cascading this process until no further transactions are unblocked. These are then
enqueued in their corresponding participant queues. If any new transactions became ready to com-
mit, the Resolver invokes t riggerCommit to initiate group commits as previously described.
Even when the Resolver is bypassed, notifying it of committed transactions remains essential to
unblock any downstream transactions that may depend on them. This dependency tracking mecha-
nism ensures that transactions are committed in the correct order while enabling efficient batching

through coordinated group commits.

5.5 Sangria

Our goal is to allow a distributed database to dynamically adapt its commit algorithm based on
runtime conditions. To this end, we introduce Sangria, a novel distributed commit protocol that

generalizes both Strict-2PC and Pipelined-2PC.

127

Algorithm 4 COORDINATOR COMMIT PROTOCOL

1: procedure COMMIT(transaction_id)
2 // Prepare Phase
3 RL « getLocalStats(resolver_load)
4: CL < getLocalStats(contention_level)
5: for all participant € participants do
6 send PREPARE(RL, CL) to participant
7 wait for all PREPARERESPONSES
8 collect locking decisions and dependencies from responses
9: // Decide Commit Path
10: if dependencies # () then
11: // Delegate to Resolver
12: send COMMITONBEHALF with dependencies to Resolver
13: await Resolver completion
14: else
15: /l Direct Commit Path
16: persist transaction decision to durable storage
17: for all participant € participants do
18: send COMMIT to participant
19: wait for all participants to complete
20: if any participant released locks early then
21: notify Resolver of committed transaction (async)
5.5.1 Overview

release locks early (pipelining) or hold them conservatively (strict). These decisions are informed
by lightweight signals collected and reported by the coordinator, such as the current load of the
Resolver signaling its ability to resolve dependencies efficiently, and metrics about the contention
level across participants. Participants communicate their decisions back to the coordinator, which
determines if any interaction with the Resolver is needed. This hybrid design enables Sangria to

dynamically range from fully serialized to aggressively pipelined commit modes — based on live

Sangria allows each participant involved in a transaction to independently decide whether to

workload conditions.

128

5.5.2 Coordinator Commit Protocol

Algorithm 4 presents the pseudocode for the coordinator’s behavior during commit. The coor-
dinator collects statistics locally about the current load of the Resolver and the contention levels
of participants and includes this information in the PREPARE messages sent to each participant.
The PREPARERESPONSES contain each participant’s locking decision (early release or conserva-
tive hold) and any declared dependencies on previously executing transactions. If any participant
reports unresolved dependencies (due to early lock release over conflicting keys), the coordinator
invokes the commitOnBehalf API on the Resolver, delegating commit resolution. The resolver
then manages dependency tracking and group commits as discussed in §5.4. If no dependencies
are reported, the coordinator commits the transaction directly: it writes the transaction decision to
durable storage, sends COMMIT messages to all participants, and waits for acknowledgments. Fi-
nally, if any participant performed early lock release, the coordinator asynchronously informs the
Resolver when the transaction is committed via the registerCommittedTXs API, enabling it

to unblock downstream dependents.

5.5.3 Participant Prepare Procedure

Algorithm 5 describes the participant’s logic. Upon receiving a prepare request, the participant
first validates the transaction and performs local checks. Then, it tracks and updates dependencies
for the requested key, accordingly. If the key was last updated by a transaction whose commit is
still pending, the participant records a dependency on that transaction. It then evaluates whether
early lock release is beneficial and chooses the commit mode accordingly, guided by the contention
level and the Resolver load included in the request. Depending on the commit mode selected, the
key’s dependency info is updated either to the current transaction or to EMPTY. The participant
appends a prepare record to its WAL buffer and then releases the lock if the commit mode selected
is early release. Once the WAL buffer is flushed, the participant returns a PREPARERESULT that
includes an optional dependency and the selected commit mode. These results allow the coordi-

nator to decide whether to delegate to the Resolver or commit the transaction directly. Note that

129

Algorithm S PARTICIPANT PREPARE PROCEDURE

1: procedure PREPARE(transaction, prepare_request)

2 Perform validation checks

3 RL < prepare_request.resolver_load

4: CL « prepare_request.contention_level

5: KEY « prepare_request.key

6 /l Record and update dependencies

7 if KEY has existing pending writer transaction then
8 record dependency on pending writer transaction
9

commit_mode < CHOOSECOMMITSTRATEGY(RL, CL)

10: if commit_mode is early release then

11: set key’s pending writer to current transaction
12: else

13: set key’s pending writer to EMPTY

14: append prepare record to WAL buffer

15: if commit_mode is early release then

16: release lock

17: flush WAL buffer asynchronously
18: wait for WAL flush completion
19: return PREPARERESULT with possible dependency and commit_mode

for simplicity, we describe each participant as managing a single key and omit differences in be-
havior when a key is read but not written. In practice, participants may hold multiple keys, and the
protocol handles read-only keys differently; dependency tracking and commit mode selection are

performed independently per key.

5.5.4 Discussion

Sangria generalizes both Strict-2PC and Pipelined-2PC by treating commit strategy as a per-
participant decision rather than a system-wide choice. The centralized Resolver allows the system
to maintain correctness in the presence of early lock release by managing dependencies and coor-
dinating group commits in the right order. Importantly, enabling this adaptive behavior required
lightweight extensions to the 2PC protocol. We augmented PREPARE and PREPARERESPONSE
messages to carry contextual information: Resolver load, locking decisions, and dependencies.
This extra information enables participants to make informed decisions and coordinators to route

transactions along the most efficient commit path.

130

5.5.5 Adaptive Decision Logic

As a proxy for Resolver load, the coordinator periodically pings the Resolver to obtain the
current length of its queue of transactions waiting to commit. To improve stability and avoid
reacting to transient spikes, the coordinator maintains a history of the last 200 queue-length ob-
servations and computes the average. For contention, the coordinator tracks the number of open
client connections and monitors how requests are distributed across keys. Both the Resolver load
and contention metrics are included in the PREPARE request sent to each participant. Participants
also evaluate local contention proxies such as the number of transactions waiting on key-level locks
and the number of pending commits.

Based on these inputs, they apply empirically-tuned thresholds to decide whether early lock
release is likely to be beneficial. These thresholds define the regimes in which Sangria should
perform early lock release or fall back to traditional locking, allowing the protocol to adapt dy-

namically to workload and system state.

5.5.6 Correctness Guarantees

Our adaptive protocol maintains the same correctness guarantees as the underlying Strict-2PC
and Pipelined-2PC protocols.
Atomicity. All-or-nothing execution is preserved through the 2PC structure. The coordinator en-
sures that either all participants commit or all abort, regardless of the selected commit mode.
Consistency. Database consistency is maintained through proper isolation mechanisms. In Strict-
2PC mode, strict 2PL ensures serializable execution. In Pipelined-2PC mode, the Resolver com-
ponent manages dependencies to prevent violations of serializability.
Durability. Both protocol modes ensure durability through write-ahead logging (WAL) as de-
scribed in the algorithms. Participants write prepare records to persistent storage before voting to

commit, guaranteeing that committed transactions survive system failures.

131

Isolation. The protocol enforces isolation using different strategies based on the chosen mode. In
Strict-2PC mode, 2PL guarantees strict serializability. In contrast, when operating in Pipelined-
2PC mode, the Resolver component (see Algorithm 3) upholds the same isolation level by moni-

toring transaction dependencies and enforcing correct commit order.

5.6 Evaluation

In this section, we evaluate the performance and adaptability of Sangria, our proposed commit

protocol. We seek to answer the following key questions:

* Q1: How does Sangria perform under workloads with different contention levels and different

Resolver capacities?

* Q2: How effectively does Sangria respond to runtime variations in contention intensity and

Resolver capacity?

* Q3: How does Sangria perform with mixed workloads of varying contention levels?

* Q4: How well does the centralized Resolver perform in grouping and processing transactions

in batches?

5.6.1 Methodology

Baselines. We evaluate Sangria by comparing it against the two foundational baselines, Strict-2PC

and our version of Pipelined-2PC that uses the centralized Resolver.

Metrics. We focus on two primary metrics:

* Throughput: number of committed transactions per second.

Machine. All experiments are run on a 16 core Cloudlab server with 2 threads per core and 128

GiB RAM (type c220g1). We use a single-node setup to precisely control the resources allocated

132

to each component by pinning services to specific CPU cores. Our focus is not on stretching scala-
bility to extreme cluster sizes, but rather on understanding the performance trade-offs of adaptivity

in a tightly controlled environment.

Experimental Setup. Our prototype builds on Chardonnay [159], a distributed key-value store
that employs strict 2PL in combination with 2PC to ensure atomicity and strict serializability. To
enable a clean evaluation of the tradeoff space between workload contention levels and Resolver
capacity, we create an execution environment that is isolated from abort-induced artifacts. This
is achieved by avoiding deadlocks, which are the primary source of aborts in 2PL-based systems.
With Chardonnay, the set of keys accessed by each transaction is known ahead of time, which
allows it to acquire locks in a globally consistent order, ensuring that circular wait conditions do
not occur.

The system shards data horizontally across shared-nothing range servers, each responsible for a
configurable number of key ranges. In our setup, one CPU core is dedicated to the Resolver, while
two additional cores are used to generate background load on the Resolver in order to modulate its
available capacity. The remaining cores support the main workload generator (whose performance

we evaluate), as well as the coordinator and range server components.

5.6.2 Workloads

We test Sangria under two workloads: the standard Yahoo! Cloud Serving Benchmark (YCSB)
benchmark [89] and a custom synthetic workload generator we developed. In the experiments
that use the custom workload generator, the number of keys are fixed, transactions are gener-
ated concurrently by multiple clients, and each transaction accesses exactly two distinct keys
selected uniformly at random. To control contention, we introduce a tunable parameter called
concurrency-level, which determines the number of clients issuing transactions in paral-
lel. Each client operates in a closed loop, issuing one transaction at a time. For a fixed key set,
increasing concurrency-level raises the probability of key overlap between transactions,

thereby increasing contention. This concurrency model mirrors that of widely used benchmarking

133

tools such as BenchBase [161], where the same parameter is used to modulate parallelism and

contention pressure during workload execution.

fm Sangria i B Pipelined-2PC Be Strict-2PC

1,400 |
1,200 |
1,000 |-
800 -
600 |-
400 |-
200 |-
0

N
N
N

(a) Resolver Capacity: High

Transactions / sec

N NSNS NSSNNSSNSNNSSNSNNSSY

SNNNNNNNNNNNNNNNNNNNNNNNNY
N
N
N
<
N
N
N

1,400 |
1,200 |
1,000 |-
800 -
600 |-
400 -
200 -
0 Wl—.-

1 50 100 200 500

1’388 || (¢) Resolver Capacity: Low |
1,000 |-
800
600 -
400 -
200
0 m“

1 5 25 50 100 200 500

Concurrency Level

Transactions / sec

NNSNSSSNSSNSNNSSNY
N
NNNNNNNNNNNNNNNNNN

Transactions / sec

7
7]
7
7]
7
7
7
7
7
7
]
7
]
7
7]
7
7
z

Fig. 5.4: (Q1) Throughput of the three protocols as a function of workload contention (x-axis: con-
currency level) under three different Resolver capacity settings (a) high capacity (no background
load), (b) medium capacity (moderate background load), and (c) low capacity (heavy background
load). Sangria is able to adapt its behavior based on the Resolver’s capacity and workload con-
tention, matching or exceeding the throughput of the baselines in all regimes.

5.6.3 Contention vs. Resolver Capacity (Q1)

We evaluate how Sangria performs across a spectrum of contention levels and Resolver ca-

pacities, using two complementary experimental setups: our custom workload generator and the

134

YCSB.

Custom Workload. We use 50 keys and vary contention using the concurrency-level parameter, as
described above. Figure 5.4 presents the results of this experiment. It consists of three subfigures,
each corresponding to a different level of Resolver capacity, which we control using a secondary
workload generator. This generator executes background transactions that consume the Resolver’s
resources by issuing RPCs, entering the dependency graph, acquiring internal locks, and so on. We
control this background load by configuring the generator with three different concurrency levels:
0, 100, and 1000, which we refer to as high, medium, and low Resolver capacity, respectively.
When the background load is zero, the Resolver is idle and has maximal capacity. As a proxy
for Resolver load, we monitor the number of transactions waiting in response channels — i.e.,
transactions that are blocked waiting for the Resolver to finalize their commit.

Each subfigure shows throughput as a function of the main workload’s contention level. On
the x-axis, contention is varied by adjusting the concurrency level of the main workload gener-
ator. As an internal proxy for contention, the coordinator monitors system-wide metrics such as
the number of in-flight transactions (i.e., active client connections) and the distribution of requests
across keys. In addition, each participant tracks local indicators of contention, including the num-
ber of transactions waiting on key-level locks and the number of transactions whose commits are
pending.

In Figure 5.4(a), the Resolver operates at full capacity with no external load (high capacity). In
this case, the Pipelined-2PC baseline consistently outperforms Strict-2PC as contention increases.
With no Resolver bottlenecks, the benefits of early lock release always dominate, enabling higher
concurrency. The Sangria protocol closely follows the performance of Pipelined-2PC in this set-
ting, as it correctly favors early lock release when the Resolver is under minimal load.

In Figure 5.4(b), Resolver capacity is moderately constrained. We now observe a more nu-
anced behavior: at low contention levels, the overhead of coordinating through the Resolver out-
weighs the modest benefits of pipelining, making Strict-2PC more efficient. However, once the

contention level crosses a threshold (around concurrency equal to 100), pipelining becomes es-

135

sential to mitigate queuing delays caused by lock contention. Sangria identifies this crossover
point and adapts accordingly, falling back to Strict-2PC when pipelining is harmful and switching
only when pipelining yields tangible performance gains. We tune this threshold empirically in our
system.

In Figure 5.4(c), the Resolver is heavily overloaded (low capacity). Under these conditions,
pipelining offers diminishing returns when contention is low-to-moderate: the Resolver becomes
the bottleneck, and the added overhead of dependency tracking and queueing outweighs the bene-
fits of early lock release. Only at the highest contention levels (concurrency > 200) do the advan-
tages of pipelining re-emerge. Again, Sangria adapts its behavior accordingly, choosing Strict-2PC
in the low or moderate contention regime and gradually shifting toward pipelining as contention
intensifies.

Notice that across all Resolver capacities, at the lowest contention level (concurrency=1), all
three protocols converge in performance: transactions do not conflict, dependencies never arise,
and the Resolver is bypassed entirely. The Pipelined-2PC baseline still asynchronously notifies the
Resolver of committed transactions to ensure correct dependency resolution for any future depen-
dents, but this occurs outside the critical path and thus has no effect on throughput. Conversely,
Sangria leans toward the Strict-2PC behavior in this regime to avoid introducing unnecessary over-
head to the Resolver from commit-notification messages.

Across all scenarios, Sangria navigates the two-dimensional trade-off between Resolver load
and contention effectively. It learns when to pipeline and when to revert to strict mode, delivering
performance close to the best static strategy in each regime.

YCSB. In (Figure 5.5), we introduce contention through a different mechanism than in prior sec-
tions. We fix the keyspace to 50 keys and configure the benchmark to use only read-modify-write
operations. Each YCSB operation is wrapped as a transaction by appending a commit step, effec-
tively transforming the workload into a transactional one. Each transaction operates on a single
key, which is sampled from a Zipfian distribution. We run the benchmark with 50 concurrent

clients (threads), each issuing transactions in a closed loop. We then vary the Zipfian constant

136

(a) Resolver Capacity: High ||

BBSangria BEPipelined-2PC BB Strict-2PC

AANNANNNNNNNNNNNNNNNY

(b) Resolver Capacity: Medium | |

3,000

2,500 |-
2,000 |-
1,500 -
1,000 |-

500 |-

298 /

75]

uonosesuel],

3,000

2,500 |-
2,000 |-

298 /

2]

1,500 +

uonodesuel],

(c) Resolver Capacity: Low ||

////]

3,000

2,500 |-
2,000 |-

298 /

2]

1,500 +
1,000 |-
500 |-

uonodesuel],

0.5
Zipf Constant

Fig. 5.5: (QIl) YCSB: Throughput comparison as contention increases (by increasing the Zipf

Constant) under varying Resolver capacities.

137

to control the skew in key access: a value of 0.0 yields uniform key selection, while increasing
the constant toward 1.0 leads to increasingly skewed workloads where a few keys are accessed
disproportionately often.

This setup allows us to systematically sweep from low- to high-contention scenarios while
holding other parameters constant. As shown in the figure, Sangria continues to match or exceed
the performance of the best static protocol across all regimes. In low-skew settings, it behaves
similarly to Strict-2PC by holding locks until commit. As the skew increases and contention con-
centrates on a small subset of keys, Sangria dynamically switches to early lock release for those
keys — matching the behavior of Pipelined-2PC — while conservatively holding locks for less

contended keys. This enables it to consistently deliver high throughput across the spectrum.

5.6.4 Online Adaptation (Q2)

While the previous set of experiments fixed workload characteristics — such as contention
level and Resolver capacity — in advance, the following experiments introduce dynamic runtime
variation in both dimensions using the custom workload generator. We issue 16,000 transactions,

each reading and then writing two keys selected uniformly at random without replacement.

Online Workload Contention Shift. In Figure 5.6, we present the throughput of each proto-
col under dynamic workload contention, plotted across three different Resolver capacities: high,
medium, and low. In all cases, the number of keys is fixed to 50, and the workload alternates
at runtime between low-contention (concurrency = 25) and high-contention (concurrency = 500)
phases. These alternating phases simulate realistic runtime variations that a distributed system may
encounter in production. The two baselines, Strict-2PC and Pipelined-2PC, apply a fixed commit
strategy for all transactions, regardless of workload shifts. As a result, they exhibit lower overall
throughput, as they cannot adapt to changing contention dynamics. In contrast, Sangria uses run-
time feedback from the coordinator — such as local traffic of transactions and the load observed on
the Resolver — to make commit path decisions on a per-transaction basis. This enables Sangria to

choose the most appropriate behavior at each phase. When contention spikes, pipelining becomes

138

fa S‘angria fe Pipelinqd-ZPC fn Strict-%PC

1,200
7777
2570
2270
2570
2270
2570
2270
2570 e
- 277 % 77 -
b 7777 lvss7 7777
2577 777 2570
270 0227 7270
[S) 2550, 2 2550,
270 0227 7050
(D] 20 727 2570
X 777 0227 700
2570 2 7070
[2270 2 720 -
-~ 800
277 277 200
7] 20 0220 7270
277 777 250
el 2270 0227 720
2570 777 2570
o 2270 0227 700
. 20 7 2570
= 2270 0227 70
[2570 777 7070 -
Q 2270 L2727 700
] 270 v227 7070
2577 r200 2570
A 2570 0227 70
2570 777 2570
=t 7027 0220 757
2570 777 2570
< oy 270 2777
o 2570 777 2070
[2270 0227 700 -
= 7507 7 7000
2277 0227 700
2570 0227 7070
277 277 20
2570 0227 7000
777 2570
2270 0227 7200
2570 % 2570
2270 0227 700
- 2570 777 250 -
2270 0227 70
777 777 7070
2277 77 2570
2570 0227 7070
2577 777 2070
2270 0227 720
277 777 727
270 0227 7000
0 7777 7 777

Fig. 5.6: (Q2) Throughput of each protocol as workload contention alternates between low and
high phases at runtime, under three different resolver capacities (high, medium, low). Sangria
adapts to changing contention, matching or exceeding the best static baseline in each regime.

essential to mitigate long lock hold times; as expected, Strict-2PC suffers during these periods due
to its conservative locking and so its overall throughput declines. Conversely, when contention is
low and the capacity of the Resolver is limited (medium and low), the overhead of dependency
tracking and queue management outweighs the benefits of pipelining, causing Pipelined-2PC to
degrade and its overall throughput decreases similarly. Sangria is able to detect all these regimes
and switch accordingly. This ability to adapt to runtime variation demonstrates the robustness of
Sangria and highlights the importance of dynamic commit path selection.

Online Resolver Capacity Shift. We next evaluate how the protocols respond to online shifts in
Resolver capacity, while holding each experiment’s workload contention level fixed. Specifically,
we fix again the number of keys to 50 and evaluate three different contention regimes — low
(concurrency = 5), moderate (concurrency = 50), and high (concurrency = 500) — as shown in
Figure 5.7. For each contention regime, we dynamically vary Resolver load at runtime by adjusting
the concurrency level of a secondary background workload that interacts with the Resolver —

alternating between phases of low capacity (high background concurrency, heavily overloading the

139

fa S‘angria fe Pipelinqd-ZPC fn Strict-%PC

1,400
1,200

7
7
Q :
3 i
- 7
17,) ’ A
%
~ ’77
7
n 777
7
= L 7
7
S 2

.
3 i
%
15} r227
2 %
600 7
- 7
2] 77
= 20
sy 7
< oy 270
s 5 7
7 i
= 255 2
5 2
400 |-
5 2
i 7
% 2
7 2
5 2
7 7
5 %
B 7 i
5 %
5 2
2 %
5 7
i 7
% G
7 2
0 7777 7

5 50 500
Concurrency Level

Fig. 5.7: (Q2) Throughput of each protocol as resolver capacity alternates between high and low
phases at runtime, under three different concurrency levels (5, 50, 500). Sangria adapts to changing
resolver capacity, matching or exceeding the best static baseline in each regime.

Resolver) and high capacity (no background traffic). Across all contention regimes, the baselines
suffer when conditions deviate from their ideal operating assumptions. The Strict-2PC baseline
performs reliably when the Resolver is overloaded (i.e., low Resolver capacity), since it avoids any
coordination with the Resolver. However, it fails to leverage pipelining even when the Resolver is
idle yielding lower overall throughput. On the other hand, Pipelined-2PC performs best when the
Resolver is responsive, but incurs high coordination overhead and stalls when Resolver capacity
is low. Sangria, by contrast, dynamically adjusts its commit behavior in real time. As a result,
it matches or exceeds the best-performing baseline in each phase. For extremely high contention
levels (concurrency = 500), Sangria mirrors the behavior of Pipelined-2PC, as it identifies the

substantial benefits of pipelining even under low Resolver capacity.

5.6.5 Mixed Workloads (Q3)

To further highlight the fine-grained adaptability of Sangria, we run a workload composed of

both high-contention and low-contention transactions. Specifically, the keyspace is partitioned into

140

fa S‘angria fe Pipelinqd-ZPC fn Strict-%PC

1,400
—
7777
2777
2500
= 2577 |
) iz
2500
oz 777
ez 0277
2577 77
ez 757
2777 77
) oy 207
= 2777 0227
(]) iz 757
2777 0227
2} 7777 777
2500 0227
~ 7777 7/
ez 0277
2] 7277l 777
ez 757
£ 800!
2500 2
@] 2777 227
“— iz 2
2777 0227
= oz 757
15} 2550 020
3 2577 757
600 [2277 277
2577 2
2} 7777/ s77
= 257 7%
iz 2
< oy 270
& iz 757
2777 L227
= 255 2
[ez 0227
400 :
ez 0277
2577 2
2500 2
2577 0277
2500 2
2777 0227
iz 757
- 2777 0227
oz 757
ez 0227
2577 7
ez 0277
2577 77
ez 2
2577 0277
0 7777 7

Fig. 5.8: (Q3) Throughput of each protocol under a mixed workload with both high-contention
(hot) and low-contention (cold) key regions, across three resolver capacities (high, medium, low).
Sangria dynamically applies pipelining for hot keys and strict commit for cold keys, matching or
exceeding the best baseline in each region.

100 keys, of which 50 are designated as hot and 50 as cold. We generate two disjoint workloads
targeting each key region: the hot keyset is accessed by 500 concurrent clients (high contention),
while the cold keyset is accessed by only 25 (low contention). This mixed workload introduces
asymmetric contention across the keyspace, simulating more realistic scenarios encountered in
multi-tenant or skewed-access applications.

In Figure 5.8, we report results for three levels of Resolver capacity: high, medium, and low.
The two foundational baselines, Strict-2PC and Pipelined-2PC, are static by design: they apply the
same commit strategy to all transactions, regardless of key-level contention or system state. As a
result, Pipelined-2PC incurs unnecessary dependency-tracking overhead when operating over the
cold keyset, where contention is minimal and Resolver use is avoidable. Conversely, Strict-2PC
suffers when operating over the hot keyset, as it holds locks throughout the entire commit process,
degrading concurrency.

In contrast, Sangria leverages its fine-grained decision mechanism to adjust behavior on a per-

141

participant basis. Each participant uses information about its local contention and the current load
on the Resolver, to determine whether to release locks early (enabling pipelining) or to follow a
traditional commit path. As a result, participants serving hot keys opt for pipelined behavior to im-
prove concurrency, while those operating on cold keys bypass the Resolver and avoid unnecessary
overhead.

This ability to apply different commit strategies within the same transaction workload leads
to significant gains. Across all Resolver configurations, Sangria consistently matches or outper-
forms both baselines. For high Resolver capacity, as shown in prior experiments, Pipelined-2PC
consistently outperforms Strict-2PC. Sangria achieves higher throughput by adapting its commit
behavior to the local contention profile and global system load, demonstrating that static policies

are insufficient in complex, mixed contention workloads.

5.6.6 Resolver Performance (Q4)

To better understand the internal behavior and batching effectiveness of the Resolver, we con-
duct a set of experiments measuring its ability to group transactions that become ready concur-
rently, thereby enabling them to commit in a single batched operation to the storage layer. In this
evaluation, we focus on the sizes of commit batches sent to the participants. For each batch cre-
ated by the Resolver, we record the number of transactions it contains, and we plot the cumulative
distribution function (CDF) over all observed batch sizes.

For comparison, we include the Strict-2PC baseline, which — by design — does not perform
any batching. Each transaction commits in isolation, resulting in a constant batch size of one. As
expected, its CDF is a step function that jumps immediately to 1. This serves as a lower bound and
helps visualize the relative gains of dependency-aware batching enabled by the Resolver.

We present two subfigures in Figure 5.9. In Figure 5.9(a), we fix the concurrency level to 500
— representing high contention — and vary the Resolver’s capacity by adjusting the background
load from the secondary workload. In Figure 5.9(b), we fix the Resolver’s capacity to its maximum

(i.e., no background load) and vary the primary workload’s concurrency level to vary contention.

142

@

q
@

- - - Strict-2PC
0.24 Pipelined-2PC / Resolver Capacity: High
—— Pipelined-2PC / Resolver Capacity: Medium
| Pipelined-2PC / Resolver Capacity: Low
0 5 10 15 20 25 30 35 40 45
Batch Size
(a) Batch size CDF under different Resolver capacities.
T T T T T T T T T T
1 ’ '} %]
0.8 .
]
I 0.6 - - - Strict-2PC
8 Pipelined-2PC / Concurrency Level: 1
—o— Pipelined-2PC / Concurrency Level: 5
0.4 —=— Pipelined-2PC / Concurrency Level: 25
—e— Pipelined-2PC / Concurrency Level: 50
021 —— Pipelined-2PC / Concurrency Level: 100
Pipelined-2PC / Concurrency Level: 200
0l | —— Pipelined-2PC / Concurrency Level: 500

2 4 6 g8 10 12 14 16 18 20 22
Batch Size

(b) Batch size CDF under different concurrency levels.

Fig. 5.9: (Q4) Cumulative distribution function (CDF) of batch sizes for commit groups formed
by the Resolver. (a) Varying Resolver capacity under high contention (concurrency = 500) shows
that lower capacity leads to larger batch sizes due to more transactions accumulating before being
unblocked. (b) Varying workload contention under maximum Resolver capacity demonstrates that
higher concurrency increases batching opportunities, while low contention results in mostly single-
transaction commits.

143

In Figure 5.9(a), we observe that under high contention, the Resolver is often able to batch
together multiple transactions that become unblocked simultaneously. As the Resolver’s capacity
decreases, the CDF curve becomes smoother and shifts rightward, indicating larger batch sizes.
This happens because reduced Resolver responsiveness causes transactions to accumulate in the
dependency graph. When a dependency is resolved, a larger set of transactions may be unblocked
at once and committed as a group. Thus, even though the Resolver is slower, the batching effect
helps mitigate performance degradation — highlighting a self-compensating behavior under high
contention and constrained Resolver capacity.

In contrast, Figure 5.9(b) shows the impact of varying contention levels under maximmum
Resolver capacity. As expected, higher concurrency increases the likelihood of transaction depen-
dencies, leading to more opportunities for batching. The CDF curves for higher concurrency levels
(e.g., 500) have more gradual slopes than those with lower concurrency (e.g., 5), reflecting an in-
crease in batch size. However, batch sizes remain smaller compared to those in Figure 5.9(a), since
the responsive Resolver processes transactions quickly, reducing the likelihood that large groups
of transactions will accumulate before resolution.

These results demonstrate the ability of the Resolver to maximize batching opportunities. Even

under constrained capacity, it can batch transactions to improve overall throughput.

5.7 Related Work

Early Lock Release. Relaxing strict 2PL to increase concurrency by releasing locks at earlier
stages [156, 162] is a technique that was applied to single-node databases with large buffer pools,
since a transaction may run in less time than it takes to log the transaction’s commit record on
stable storage [157], and was later rigorously formalized and further developed in works such as
controlled lock violation [157] and Bamboo [155]. The distributed forms of this technique have
recently been proposed to optimize performance in distributed databases [163]. Orleans [154]
pioneered the use of a distributed form of early lock release by releasing all locks of a transaction

during phase one of 2PC. These works always apply early lock release and, therefore, are not

144

adaptive.

Commit Dependencies and Resolvers. The notion of commit dependency was introduced in
the ACTA framework [164]. We know of few prior works that use the concept.

In Speculative Locking (SL) [165], if a transaction 77 updates x and a later transaction 73 reads
X, then 75 speculates by having two incarnations, 73 that reads 7;’s before-image of x and 75, that
reads its after-image [42]. T>; and 7>, both take a commit dependency on 77. If 7; commits, 75,
is retained, else 73 is retained. The simulation study [165] of a distributed DBMS shows that SL.
gets better throughput than 2PL by overlapping speculative executions of 7, with 77, at the cost of
more CPU load. By contrast, in our design, 7> only takes a dependency on 7; after 77 terminates
so it has no more CPU load.

Microsoft’s Hekaton uses a more limited form of commit dependency [166]. It allows 75 to take
a commit dependency on 7 if 7; started after 77 finished execution and entered the validation phase
but has not yet committed. Thus, it benefits from overlapping 7>’s execution with 77’s validation.

Orleans’ [154] transactions track their commit dependencies on other transactions that have
yet to complete 2PC and implement cascading abort by aborting if any commit dependency fails
to commit. An earlier design [153] used a centralized resolver, called Transaction Manager, in a
fashion similar to the Resolver in our design, but had to involve the transaction manager in every
transaction, causing it to be a scalability bottleneck.

Handling Skewed Workloads. TurboDB [167] takes a different approach in handling skewed
workloads, by assigning records in the highly contended subset of the database to a single node
subsystem (called the turbo) within an otherwise distributed and sharded DBMS. The turbo can
utilize single-node optimizations and performance multipliers allowing it to handle the skewed,
contended records efficiently. For this approach to work effectively, it assumes that the popularity
of records is stable over time, making it less dynamic and adaptive than our Sangria design. Fur-
thermore, while we also introduce a singleton component in the Resolver, the work it needs to do
per transaction is much less than the turbo in TurboDB, and hence we expect to be able to achieve

higher scalability.

145

5.8 Future Work

This work opens several avenues for future exploration. First, while Sangria uses empirically
tuned thresholds to determine when to switch between commit protocols, future systems could ben-
efit from learning-based approaches that automatically infer regime boundaries based on runtime
signals. Additionally, richer proxies for workload contention such as the average time transactions
wait on participant locks could improve decision making even more.

Second, our current batching mechanism at the Resolver is opportunistic. Introducing lightweight
scheduling techniques could help shape batch formation in a more controlled way, potentially im-
proving commit efficiency and better exploiting the pipelining benefits under diverse load condi-
tions.

Finally, our results suggest that adaptivity in distributed transaction processing is a promising
and underexplored direction. Beyond commit protocol selection, adaptive techniques could be
extended to other layers of the transaction stack, including concurrency control mechanisms or
protocols that benefit from early lock release. Developing general principles for runtime-aware

adaptation in distributed systems remains an exciting area for future work.

5.9 Conclusions

We presented Sangria, an adaptive 2PC protocol that dynamically switches between strict and
pipelined commit strategies based on runtime conditions. By monitoring real-time signals such as
workload contention and Resolver load, Sangria selects the most efficient commit path, achieving
up to 1.61x higher throughput than the best static baseline in our experiments.

Our key contribution is a runtime-aware decision mechanism that adapts commit behavior to
live workload conditions while preserving full ACID semantics. To our knowledge, Sangria is the

first commit protocol to incorporate such adaptive capabilities.

146

Conclusion

This thesis explored the design of efficient systems under resource constraints, spanning two
distinct domains: privacy-preserving computation and distributed transaction processing. In the
first part of the thesis, we treated privacy as a scarce and quantifiable system resource. Through
the systems DPack, Turbo, and Cookie Monster, we developed new techniques for maximizing
utility under fixed differential privacy (DP) budgets. These systems addressed different layers
of the privacy stack—from workload scheduling to caching to on-device budgeting for DP-based
ad measurement —but shared a common goal: increasing the usefulness of private data while
respecting strict privacy guarantees. Collectively, these contributions offer practical ways to close
the growing gap between the theoretical promise of DP and its real-world applicability.

The second part of the thesis shifted to a more classical systems challenge: improving the
throughput of distributed transaction processing. With Sangria, we showed how commit proto-
cols can dynamically adapt to runtime conditions to better manage coordination overhead and
contention. While this work does not involve privacy, it reinforces a central thesis goal: resource-
aware design that adjusts to workload and system variability to improve efficiency.

Together, these contributions highlight two broader takeaways. First, systems can benefit from
treating non-traditional resources—Ilike privacy budgets—as first-class constraints, worthy of al-
gorithmic and systems-level attention. Second, adaptability is key: whether in scheduling DP
workloads or coordinating transactions, systems that respond to changing conditions can deliver

significantly better performance under tight constraints.

147

[1]

(2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

References

C. Dwork, A. Smith, T. Steinke, and J. Ullman, “Exposed! A survey of attacks on private
data,” Annual Review of Statistics and Its Application, 2017.

N. Carlini, C. Liu, U. Erlingsson, J. Kos, and D. Song, “The secret sharer: Evaluating and
testing unintended memorization in neural networks,” in 28th USENIX Security Sympo-
sium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, N. Heninger
and P. Traynor, Eds., USENIX Association, 2019, pp. 267-284.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against
machine learning models,” in sp, 2017.

N. Carlini et al., “Extracting training data from large language models,” in 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021, M. Bailey and R. Green-
stadt, Eds., USENIX Association, 2021, pp. 2633-2650.

M. Nasr et al., Scalable extraction of training data from (production) language models,
2023. arXiv: 2311.17035 [cs.LG].

I. Dinur and K. Nissim, “Revealing information while preserving privacy,” in pods, 2003.

C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in pri-
vate data analysis,” in fcc, 2006.

T. Luo, M. Pan, P. Tholoniat, A. Cidon, R. Geambasu, and M. Lécuyer, “Privacy budget
scheduling,” in 15th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 21), USENIX Association, Jul. 2021, pp. 55-74, 1SBN: 978-1-939133-22-9.

M. Lécuyer, R. Spahn, K. Vodrahalli, R. Geambasu, and D. Hsu, “Privacy Accounting and
Quality Control in the Sage Differentially Private ML Platform,” in sosp, 2019.

N. Kiichler, E. Opel, H. Lycklama, A. Viand, and A. Hithnawi, “Cohere: Managing differ-
ential privacy in large scale systems,” in 2024 IEEE Symposium on Security and Privacy
(SP), IEEE, 2024, pp. 991-1008.

R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan, “Altruistic scheduling in
multi-resource clusters,” in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA: USENIX Association, Nov. 2016, pp. 65-80,
ISBN: 978-1-931971-33-1.

148

https://arxiv.org/abs/2311.17035

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “HUG: Multi-resource fairness for corre-
lated and elastic demands,” in 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), Santa Clara, CA: USENIX Association, Mar. 2016, pp. 407—
424, 1SBN: 978-1-931971-29-4.

C.Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multiresource allocation: Fairness—efficiency
tradeoffs in a unifying framework,” IEEE/ACM Transactions on Networking, vol. 21, no. 6,
pp- 1785-1798, 2013.

A. Gutman and N. Nisan, “Fair allocation without trade,” in Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems - Volume 2, ser. AA-
MAS ’°12, Valencia, Spain: International Foundation for Autonomous Agents and Multia-
gent Systems, 2012, 719€1AS728, ISBN: 0981738125.

D. C. Parkes, A. D. Procaccia, and N. Shah, “Beyond dominant resource fairness: Exten-

sions, limitations, and indivisibilities,” ACM Transactions on Economics and Computation
(TEAC), vol. 3, no. 1, pp. 1-22, 2015.

R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella, “Multi-resource pack-
ing for cluster schedulers,” in Proceedings of the 2014 ACM Conference on SIGCOMM,
ser. SIGCOMM 14, Chicago, Illinois, USA: Association for Computing Machinery, 2014,
455§AS466, ISBN: 9781450328364.

Q. Weng et al., “MLaaS in the wild: Workload analysis and scheduling in Large-Scale
heterogeneous GPU clusters,” in /9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), Renton, WA: USENIX Association, Apr. 2022, pp. 945-
960, 1SBN: 978-1-939133-27-4.

M. Backes, P. Berrang, M. Humbert, and P. Manoharan, “Membership privacy in microRNA-
based studies,” in ccs, 2016.

C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan, “Robust traceability from trace
amounts,” in focs, 2015.

N. Homer et al., “Resolving individuals contributing trace amounts of DNA to highly com-
plex mixtures using high-density SNP genotyping microarrays,” PLoS Genetics, 2008.

B. Jayaraman and D. Evans, “Evaluating differentially private machine learning in prac-
tice,” in usenixsec, 2019.

S. Vadhan, “The complexity of differential privacy,” in Tutorials on the Foundations of
Cryptography, 2017.

I. Mironov, “Rényi Differential Privacy,” in Computer Security Foundations Symposium
(CSF), 2017.

149

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Google Differential Privacy, https://github.com/google/differential-privacy/
tree/main/python/dp_accounting, 2022.

Google, TensorFlow Privacy, https ://github.com/tensorflow/privacy,
Accessed: 2020-11-10.

Facebook, Opacus, https://opacus.ai/, Accessed: 2020-11-10.

J. Murtagh and S. Vadhan, “The Complexity of Computing the Optimal Composition of
Differential Privacy,” in Theory of Cryptography, Berlin, Germany: Springer, Dec. 2015,
pp. 157-175.

TensorFlow Extended Guide, https://www.tensorflow.org/tfx/guide/examplegen,
2022.

R. J. Wilson, C. Y. Zhang, W. Lam, D. Desfontaines, D. Simmons-Marengo, and B. Gip-
son, “Differentially private sql with bounded user contribution,” Proceedings on Privacy

Enhancing Technologies, vol. 2020, no. 2, pp. 230-250, 2020.

S. Berghel et al., “Tumult Analytics: a robust, easy-to-use, scalable, and expressive frame-
work for differential privacy,” arXiv, Dec. 2022. eprint: 2212 .04133.

H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems. Springer, 2004, ISBN: 978-
3-540-40286-2.

Gurobi Optimization, Gurobi Optimization homepage, www . gurobi.com/, 2021.

R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for vector bin packing,”
Tech. Rep., 2011.

T. Luo, M. Pan, P. Tholoniat, A. Cidon, R. Geambasu, and M. Lécuyer, Privacy Resource
Scheduling (extended version), https://github.com/columbia/privatekube,
2021.

R. M. Rogers, A. Roth, J. Ullman, and S. Vadhan, “Privacy odometers and filters: Pay-as-
you-go composition,” in nips, 2016.

V. Feldman and T. Zrnic, “Individual privacy accounting via a renyi filter,” in Thirty-Fifth
Conference on Neural Information Processing Systems, 2021.

M. Lécuyer, “Practical Privacy Filters and Odometers with RAI'nyi Differential Privacy
and Applications to Differentially Private Deep Learning,” in arXiv, v2, 2021.

Goop generalized mixed integer optimization in Go, Goop homepage, https://github.
com/mit-drl/goop/, 2021.

150

https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/tensorflow/privacy
https://opacus.ai/
https://www.tensorflow.org/tfx/guide/examplegen
2212.04133
www.gurobi.com/
https://github.com/columbia/privatekube
https://github.com/mit-drl/goop/
https://github.com/mit-drl/goop/

[39] Simpy, Discrete event simulation for Python, https://simpy.readthedocs.io/
en/latest/index.html, 2020.

[40] Q. Li, Z. Wu, Z. Wen, and B. He, “Privacy-preserving gradient boosting decision trees,’
in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, AAAI Press, 2020, pp. 784-791.

[41] N. Grislain and J. Gonzalvez, “Dp-xgboost: Private machine learning at scale,” CoRR,
vol. abs/2110.12770, 2021. arXiv: 2110.12770.

[42] M. Abadi et al., “Deep learning with differential privacy,” in ccs, 2016.

[43] P. Kairouz, B. McMahan, S. Song, O. Thakkar, A. Thakurta, and Z. Xu, “Practical and
private (deep) learning without sampling or shuffling,” in Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
M. Meila and T. Zhang, Eds., ser. Proceedings of Machine Learning Research, vol. 139,
PMLR, 2021, pp. 5213-5225.

[44] J. Ny, J. Li, and J. McAuley, “Justifying recommendations using distantly-labeled reviews
and fine-grained aspects,” in Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP)., Hong Kong, China: Association for Computa-
tional Linguistics. https://nijianmo.github.io/amazon/index .html,
Nov. 2019, pp. 188-197.

[45] L. T. Kouand G. Markowsky, “Multidimensional bin packing algorithms,” IBM Journal of
Research and development, vol. 21, no. 5, pp. 443448, 1977.

[46] Y. Azar, I. R. Cohen, S. Kamara, and B. Shepherd, “Tight bounds for online vector bin
packing,” in Proceedings of the forty-fifth annual ACM symposium on Theory of Comput-
ing, 2013, pp. 961-970.

[47]1 G. J. Woeginger, “There is no asymptotic PTAS for two-dimensional vector packing,” In-
formation Processing Letters, vol. 64, no. 6, pp. 293-297, 1997.

[48] R.Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “Graphene: Packing and dependency-
aware scheduling for data-parallel clusters,” in Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation, ser. OSDI’16, Savannah, GA,

USA: USENIX Association, 2016, 814AS$97, 1ISBN: 9781931971331,
[49] J. Gu et al., “Tiresias: A GPU cluster manager for distributed deep learning,” in USENIX
NSDI, 2019, pp. 485-500.

151

https://simpy.readthedocs.io/en/latest/index.html
https://simpy.readthedocs.io/en/latest/index.html
https://arxiv.org/abs/2110.12770
https://nijianmo.github.io/amazon/index.html

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and 1. Stoica, “Domi-
nant resource fairness: Fair allocation of multiple resource types,” in Proceedings of the
8th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2011,
Boston, MA, USA, March 30 - April 1, 2011, D. G. Andersen and S. Ratnasamy, Eds.,
USENIX Association, 2011.

L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex, “Differentially private model publishing
for deep learning,” in sp, 2019.

H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differentially private
recurrent language models,” in iclr, 2018.

B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar, “Privacy, ac-
curacy, and consistency too: A holistic solution to contingency table release,” in sigmod,
2007.

J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett, “Differentially private his-
togram publication,” in icde, 2012.

OpenDP, https://smartnoise.org/, Accessed: 2020-11-10.

IBM, Diffprivlib, https : //github.com/IBM/differential —~privacy-
library, Accessed: 2020-12-7.

Google, Differential Privacy, https://github.com/google/differential -
privacy/, Accessed: 2020-11-10.

M. Hardt and G. N. Rothblum, “A multiplicative weights mechanism for privacy-preserving
data analysis,” in Symposium on Foundations of Computer Science, 2010.

R. Cummings, S. Krehbiel, K. A. Lai, and U. Tantipongpipat, “Differential privacy for
growing databases,” in nips, 2018.

F. D. McSherry, “Privacy integrated queries: An extensible platform for privacy-preserving
data analysis,” in sigmod, 2009.

D. Proserpio, S. Goldberg, and F. McSherry, “Calibrating data to sensitivity in private data
analysis: A platform for differentially-private analysis of weighted datasets,” vidb, 2014.

I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel, “Airavat: Security and privacy
for MapReduce.,” in nsdi, 2010.

P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, “GUPT: Privacy preserving data
analysis made easy,” in Proc. of the 2012 ACM SIGMOD International Conference on
Management of Data, 2012.

152

https://smartnoise.org/
https://github.com/IBM/differential-privacy-library
https://github.com/IBM/differential-privacy-library
https://github.com/google/differential-privacy/
https://github.com/google/differential-privacy/

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

S. Garfinkel, J. M. Abowd, and C. Martindale, “Understanding database reconstruction
attacks on public data,” Communications of the ACM, 2019.

A. Cohen and K. Nissim, “Linear program reconstruction in practice,” Journal of Privacy
and Confidentiality, 2020.

A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,” in
sp, 2008.

NOT-OD-17-110: Request for Comments: Proposal to Update Data Management of Ge-
nomic Summary Results Under the NIH Genomic Data Sharing Policy, [Online; accessed
17. Apr. 2023], Apr. 2023.

Citibike system data, https://www.citibikenyc.com/system-data, 2018.

D. Desfontaines, Real world DP use-cases, https://desfontain.es/privacy/
real-world-differential-privacy.html, Accessed: 2023-04-13.

S. Bavadekar et al., “Google COVID-19 Search Trends Symptoms Dataset: Anonymization
Process Description (version 1.0),” arXiv, Sep. 2020. eprint: 2009.01265.

R. Rogers et al., “Linkedin’s audience engagements api: A privacy preserving data analyt-
ics system at scale,” arXiv preprint arXiv:2002.05839, 2020.

N. Johnson, J. P. Near, J. M. Hellerstein, and D. Song, “Chorus: A programming framework
for building scalable differential privacy mechanisms,” in 2020 IEEE European Symposium
on Security and Privacy (EuroS&P), 2020, pp. 535-551.

J. M. Abowd et al., “The 2020 census disclosure avoidance system topdown algorithm,”
Harvard Data Science Review, no. Special Issue 2, 2022.

L. Dinur and K. Nissim, “Revealing information while preserving privacy,” in sigmod, 2003.
M. Hardt and G. N. Rothblum, “A multiplicative weights mechanism for privacy-preserving
data analysis,” in 2010 IEEE 5 1st Annual Symposium on Foundations of Computer Science,

2010, pp. 61-70.

Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel, “Unique in the crowd:
The privacy bounds of human mobility,” Scientific reports, 2013.

S. R. Ganta, S. Kasiviswanathan, and A. Smith, “Composition attacks and auxiliary infor-
mation in data privacy,” in kdd, 2008.

L. Wasserman and S. Zhou, “A statistical framework for differential privacy,” Journal of
the American Statistical Association, 2010.

153

https://www.citibikenyc.com/system-data
https://desfontain.es/privacy/real-world-differential-privacy.html
https://desfontain.es/privacy/real-world-differential-privacy.html
2009.01265

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

J. Dong, A. Roth, and W. J. Su, “Gaussian differential privacy,” Journal of the Royal Sta-
tistical Society Series B: Statistical Methodology, 2022.

J. Hsu et al., “Differential privacy: An economic method for choosing epsilon,” vol. 2014,
Jul. 2014.

C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Foundations
and Trends® in Theoretical Computer Science, vol. 9, no. 3—4, pp. 211-407, 2014.

S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica, “BlinkDB:
Queries with bounded errors and bounded response times on very large data,” in Proceed-
ings of the 8th ACM European conference on computer systems, 2013, pp. 29-42.

F. McSherry, “Privacy integrated queries: An extensible platform for privacy-preserving
data analysis,” in Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009,
U. Cetintemel, S. B. Zdonik, D. Kossmann, and N. Tatbul, Eds., ACM, 2009, pp. 19-30.

J. Smith, H. J. Asghar, G. Gioiosa, S. Mrabet, S. Gaspers, and P. Tyler, “Making the most
of parallel composition in differential privacy,” Proc. Priv. Enhancing Technol., vol. 2022,
no. 1, pp. 253-273, 2022.

S. Vadhan, “The Complexity of Differential Privacy,” in Tutorials on the Foundations of
Cryptography, Cham, Switzerland: Springer, Apr. 2017, pp. 347—-450.

T. Liu, G. Vietri, T. Steinke, J. Ullman, and S. Wu, “Leveraging public data for practical
private query release,” in Proceedings of the 38th International Conference on Machine
Learning, M. Meila and T. Zhang, Eds., ser. Proceedings of Machine Learning Research,
vol. 139, PMLR, 2021, pp. 6968-6977.

Tableau, https://public.tableau.com/app/discover, Accessed: 2023-04-
13.

Citibike tableau story, https://public.tableau.com/app/profile/ james.
jeffrey/viz/CitiBikeRideAnalyzer/CitiBikeRdeAnalyzer, Accessed:
2023-04-13.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with YCSB,” in Proceedings of the 1st ACM symposium on Cloud
computing, 2010, pp. 143-154.

J. Yang, Y. Yue, and K. Rashmi, “A large scale analysis of hundreds of in-memory cache

clusters at Twitter,” in Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation, 2020, pp. 191-208.

154

https://public.tableau.com/app/discover
https://public.tableau.com/app/profile/james.jeffrey/viz/CitiBikeRideAnalyzer/CitiBikeRdeAnalyzer
https://public.tableau.com/app/profile/james.jeffrey/viz/CitiBikeRideAnalyzer/CitiBikeRdeAnalyzer

[91] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload analysis of
a large-scale key-value store,” in Proceedings of the 12th ACM SIGMETRICS/PERFOR-
MANCE joint international conference on Measurement and Modeling of Computer Sys-
tems, 2012, pp. 53-64.

[92] M. Hardt, K. Ligett, and F. Mcsherry, “A simple and practical algorithm for differentially
private data release,” in Advances in Neural Information Processing Systems, F. Pereira,
C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25, Curran Associates, Inc., 2012.

[93] S. Aydore et al., “Differentially private query release through adaptive projection,” in Pro-
ceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, M. Meila and T. Zhang, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 139, PMLR, 2021, pp. 457-467.

[94] N. Beckmann, H. Chen, and A. Cidon, “Lhd: Improving cache hit rate by maximizing
hit density,” in Proceedings of the 15th USENIX Conference on Networked Systems De-
sign and Implementation, ser. NSDI’ 18, Renton, WA, USA: USENIX Association, 2018,
389aAS403, ISBN: 9781931971430.

[95] J. Yang, Y. Yue, and K. V. Rashmi, “A large-scale analysis of hundreds of in-memory
key-value cache clusters at twitter,” ACM Trans. Storage, vol. 17, no. 3, 2021.

[96] H. Che, y. Tung, and Z. Wang, “Hierarchical web caching systems: Modeling, design
and experimental results,” Selected Areas in Communications, IEEE Journal on, vol. 20,
pp. 1305-1314, Oct. 2002.

[97] N. M. Johnson, J. P. Near, and D. Song, “Towards practical differential privacy for SQL
queries,” Proc. VLDB Endow., vol. 11, no. 5, pp. 526-539, 2018.

[98] E. Roth, H. Zhang, A. Haeberlen, and B. C. Pierce, “Orchard: Differentially private an-
alytics at scale,” in 14th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2020, Virtual Event, November 4-6, 2020, USENIX Association, 2020,
pp- 1065-1081.

[99] K. Amin, J. Gillenwater, M. Joseph, A. Kulesza, and S. Vassilvitskii, “Plume: Differential
Privacy at Scale,” arXiv, Jan. 2022. eprint: 2201.11603.

[100] I. Kotsogiannis et al., “Privatesql: A differentially private sql query engine,” Proc. VLDB
Endow., vol. 12, no. 11, 1371aA$1384, 2019.

[101] M. Mazmudar, T. Humphries, J. Liu, M. Rafuse, and X. He, “Cache me if you can: Accuracy-
aware inference engine for differentially private data exploration,” Proc. VLDB Endow.,
vol. 16, no. 4, pp. 574-586, 2022.

155

2201.11603

[102] C. Li, G. Miklau, M. Hay, A. McGregor, and V. Rastogi, “The matrix mechanism: Opti-
mizing linear counting queries under differential privacy,” VLDB J., vol. 24, no. 6, pp. 757-
781, 2015.

[103] A. Blum, K. Ligett, and A. Roth, “A learning theory approach to non-interactive database
privacy,” in Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Vic-
toria, British Columbia, Canada, May 17-20, 2008, C. Dwork, Ed., ACM, 2008, pp. 609—
618.

[104] G. Vietri, G. Tian, M. Bun, T. Steinke, and Z. S. Wu, “New oracle-efficient algorithms
for private synthetic data release,” in Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, ser. Proceedings of
Machine Learning Research, vol. 119, PMLR, 2020, pp. 9765-9774.

[105] R. McKenna, G. Miklau, M. Hay, and A. Machanavajjhala, “Optimizing error of high-
dimensional statistical queries under differential privacy,” Proc. VLDB Endow., vol. 11,
no. 10, pp. 1206-1219, 2018.

[106] C. Li, M. Hay, G. Miklau, and Y. Wang, “A data- and workload-aware query answering
algorithm for range queries under differential privacy,” Proc. VLDB Endow., vol. 7, no. 5,
pp. 341-352, 2014.

[107] R. Cummings, S. Krehbiel, K. A. Lai, and U. Tantipongpipat, “Differential privacy for
growing databases,” CoRR, vol. abs/1803.06416, 2018. arXiv: 1803.06416.

[108] T.-H. Hubert Chan, E. Shi, and D. Song, “Private and continual release of statistics,” in
Automata, Languages and Programming, S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer
auf der Heide, and P. G. Spirakis, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 405417, 1SBN: 978-3-642-14162-1.

[109] A. R. Cardoso and R. Rogers, “Differentially private histograms under continual obser-
vation: Streaming selection into the unknown,” in International Conference on Artificial
Intelligence and Statistics, AISTATS 2022, 28-30 March 2022, Virtual Event, G. Camps-
Valls, E. J. R. Ruiz, and I. Valera, Eds., ser. Proceedings of Machine Learning Research,
vol. 151, PMLR, 2022, pp. 2397-2419.

[110] Intelligent tracking prevention 2.3, https://webkit.org/blog/9521/intelligent—
tracking-prevention-2-3/, 2019.

[111] Over a decade of anti-tracking work at mozilla, https://blog.mozilla.org/en/
privacy-security/mozilla-anti-tracking-milestones-timeline/,

2022.

[112] A. Chavez, A new path for privacy sandbox on the web, https://privacysandbox.
com/news/privacy-sandbox—update/, 2024.

156

https://arxiv.org/abs/1803.06416
https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/
https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/
https://blog.mozilla.org/en/privacy-security/mozilla-anti-tracking-milestones-timeline/
https://blog.mozilla.org/en/privacy-security/mozilla-anti-tracking-milestones-timeline/
https://privacysandbox.com/news/privacy-sandbox-update/
https://privacysandbox.com/news/privacy-sandbox-update/

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

Icloud private relay overview, https : / / www . apple . com/ icloud / docs /
iCloud_Private_Relay_Overview_Dec2021.pdf, 2021.

Apple, Inc., Apple announces powerful new privacy and security features, https: //
wWww . apple . com/newsroom/ 2023 /06 /apple - announces —powerful —
new—-privacy—-and-security—-features/, 2023.

G. P. Sandbox, Privacy Sandbox for the Web, https ://privacysandbox .com/
intl/en_us/open-web, 2023.

Privacy preserving ad click attribution for the web, https://webkit .org/blog/
8943 /privacy—-preserving—ad-click—-attribution-for-the—-web/,
2019.

G. Chrome, Federated Learning of Cohorts (FLoC), https: //privacysandbox .
com/proposals/floc/.

Understanding appledAZs private click measurement, https : / /blog .mozilla .
org/en/mozilla/understanding-apples—-private-click-measurement/,

2022.

GoogledAuZ/sﬂoc is a terrible idea, https://www.eff.org/deeplinks/2021/
03/googles—floc—terrible-idea, 2021.

G. Chrome, Protected Audience API overview, https : //developers . google.
com/privacy-sandbox/relevance/protected—-audience.

Private advertising technology community group, https://www.w3.org/community/
patcg, 2024.

Attribution reporting api (ara)), https://github.com/WICG/attribution-
reporting—api/blob/main/AGGREGATE .md, 2022.

Interoperable private attribution (ipa)), https://github.com/patcg-individual-
drafts/ipa, 2022.

Private ad measurement (pam), https://github.com/patcg-individual -
drafts/private-ad-measurement, 2023.

Hybrid proposal, https : / / github . com/ patcg - individual — drafts/
hybrid-proposal, 2024.

H. Ebadi, D. Sands, and G. Schneider, “Differential Privacy: Now it’s Getting Personal,”
in Proceedings of the 42nd Annual ACM SIGPLAN SIGACT Symposium on Principles of

157

https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/newsroom/2023/06/apple-announces-powerful-new-privacy-and-security-features/
https://www.apple.com/newsroom/2023/06/apple-announces-powerful-new-privacy-and-security-features/
https://www.apple.com/newsroom/2023/06/apple-announces-powerful-new-privacy-and-security-features/
https://privacysandbox.com/intl/en_us/open-web
https://privacysandbox.com/intl/en_us/open-web
https://webkit.org/blog/8943/privacy-preserving-ad-click-attribution-for-the-web/
https://webkit.org/blog/8943/privacy-preserving-ad-click-attribution-for-the-web/
https://privacysandbox.com/proposals/floc/
https://privacysandbox.com/proposals/floc/
https://blog.mozilla.org/en/mozilla/understanding-apples-private-click-measurement/
https://blog.mozilla.org/en/mozilla/understanding-apples-private-click-measurement/
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
https://developers.google.com/privacy-sandbox/relevance/protected-audience
https://developers.google.com/privacy-sandbox/relevance/protected-audience
https://www.w3.org/community/patcg
https://www.w3.org/community/patcg
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATE.md
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATE.md
https://github.com/patcg-individual-drafts/ipa
https://github.com/patcg-individual-drafts/ipa
https://github.com/patcg-individual-drafts/private-ad-measurement
https://github.com/patcg-individual-drafts/private-ad-measurement
https://github.com/patcg-individual-drafts/hybrid-proposal
https://github.com/patcg-individual-drafts/hybrid-proposal

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

Programming Languages, Mumbai India: ACM, Jan. 14, 2015, pp. 69-81, 1SBN: 978-1-
4503-3300-9.

D. Kifer, S. Messing, A. Roth, A. Thakurta, and D. Zhang, “Guidelines for implementing
and auditing differentially private systems,” Tech. Rep., 2020.

Privacy-preserving attribution: Level I, https://private—-attribution.github.
io/api/, 2024.

R. M. Rogers, A. Roth, J. Ullman, and S. Vadhan, “Privacy odometers and filters: Pay-as-
you-go composition,” in Advances in Neural Information Processing Systems, D. Lee, M.

Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29, Curran Associates, Inc.,
2016.

Google, Attribution reporting api with aggregatable reports, https://github.com/
WICG/attribution-reporting—api/blob/main/AGGREGATE .md#contribution—
bounding—-and-budgeting/, 2024.

V. Feldman and T. Zrnic, “Individual privacy accounting via a rényi filter,” in Advances
in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.
Liang, and J. W. Vaughan, Eds., vol. 34, Curran Associates, Inc., 2021, pp. 28 080-28 091.

D. Yu, G. Kamath, J. Kulkarni, T.-Y. Liu, J. Yin, and H. Zhang, “Individual Privacy Ac-
counting for Differentially Private Stochastic Gradient Descent,” Transactions on Machine
Learning Research, Apr. 27, 2023.

B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, and C. Zhang, “Deep Learning with La-
bel Differential Privacy,” in Advances in Neural Information Processing Systems, vol. 34,
Curran Associates, Inc., 2021, pp. 27 131-27 145.

Patcg attribution synthetic data, https://docs .google . com/document /d/
1Vxgq4LrMe3A2WI1lu-7IYP1Hycr_nz3_gTpPAICX9fLcw, 2024.

M. Tallis and P. Yadav, “Reacting to variations in product demand: An application for
conversion rate (CR) prediction in sponsored search,” arXiv preprint arXiv:1806.08211,
2018.

C. Dwork and A. Roth, “The Algorithmic Foundations of Differential Privacy,” Founda-
tions and Trends® in Theoretical Computer Science, vol. 9, no. 3-4, pp. 211-407, 2013.

F. D. McSherry, “Privacy integrated queries: An extensible platform for privacy-preserving
data analysis,” in Proceedings of the 2009 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’09, New York, NY, USA: Association for Computing
Machinery, Jun. 29, 2009, pp. 19-30, 1SBN: 978-1-60558-551-2.

158

https://private-attribution.github.io/api/
https://private-attribution.github.io/api/
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATE.md#contribution-bounding-and-budgeting/
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATE.md#contribution-bounding-and-budgeting/
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATE.md#contribution-bounding-and-budgeting/
https://docs.google.com/document/d/1Vxq4LrMe3A2WIlu-7IYP1Hycr_nz3_qTpPAICX9fLcw
https://docs.google.com/document/d/1Vxq4LrMe3A2WIlu-7IYP1Hycr_nz3_qTpPAICX9fLcw

[138] S.P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith, “What can
we learn privately?” SIAM Journal on Computing, vol. 40, no. 3, pp. 793-826, 2011.

[139] E. Margolin, K. Newatia, T. Luo, E. Roth, and A. Haeberlen, “Arboretum: A planner for
large-scale federated analytics with differential privacy,” in Proceedings of the 29th Sym-
posium on Operating Systems Principles, ser. SOSP ’23, , Koblenz, Germany: Association
for Computing Machinery, 2023, 4514AS465, ISBN: 9798400702297.

[140] A. Bittau et al., “Prochlo: Strong privacy for analytics in the crowd,” in Proceedings of
the 26th Symposium on Operating Systems Principles, ser. SOSP ’17, Shanghai, China:
Association for Computing Machinery, 2017, 441aA$459, 1ISBN: 9781450350853.

[141] A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev, “Distributed differential pri-
vacy via shuffling,” in Advances in Cryptology — EUROCRYPT 2019, Y. Ishai and V. Rij-
men, Eds., Cham: Springer International Publishing, 2019, pp. 375-403, 1SBN: 978-3-030-
17653-2.

[142] Introducing private click measurement, pcm, https://webkit.org/blog/11529/
introducing-private-click-measurement-pcm/, 2021.

[143] B. Case et al., Interoperable private attribution: A distributed attribution and aggregation
protocol, Cryptology ePrint Archive, Paper 2023/437, https://eprint.iacr.org/
2023/437,2023.

[144] M. Dawson et al., Optimizing Hierarchical Queries for the Attribution Reporting API,
Comment: Appeared at AAKDD 2023 workshop; Final proceedings version, Nov. 27, 2023.
arXiv: 2308.13510 [cs].

[145] H. Aksu et al., Summary Reports Optimization in the Privacy Sandbox Attribution Report-
ing API, Nov. 22, 2023. arXiv: 2311.13586 [cs].

[146] J. Delaney et al., Differentially private ad conversion measurement, 2024. arXiv: 2403 .
15224 [cs.CR].

[147] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent
objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3, 4634AS$492, 1990.

[148] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The notions of consistency and
predicate locks in a database system,” Commun. ACM, vol. 19, no. 11, 6244AS$633, 1976.

[149] B. W. Lampson and D. B. Lomet, “A new presumed commit optimization for two phase
commit,” in Proceedings of the 19th International Conference on Very Large Data Bases,
ser. VLDB °93, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993, 630§\A$640,
ISBN: 155860152X.

159

https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
https://eprint.iacr.org/2023/437
https://eprint.iacr.org/2023/437
https://arxiv.org/abs/2308.13510
https://arxiv.org/abs/2311.13586
https://arxiv.org/abs/2403.15224
https://arxiv.org/abs/2403.15224

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker, “An evaluation of distributed
concurrency control,” Proc. VLDB Endow., vol. 10, no. 5, 5535ASS64, 2017.

H. Lim, M. Kaminsky, and D. G. Andersen, “Cicada: Dependably fast multi-core in-
memory transactions,” in Proceedings of the 2017 ACM International Conference on Man-
agement of Data, ser. SIGMOD ’17, Chicago, Illinois, USA: Association for Computing
Machinery, 2017, 214AS35, ISBN: 9781450341974,

E. Zamanian, J. Shun, C. Binnig, and T. Kraska, “Chiller: Contention-centric transaction
execution and data partitioning for modern networks,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, ser. SIGMOD 20, Portland,
OR, USA: Association for Computing Machinery, 2020, 5114A$526, ISBN: 9781450367356.

T. Eldeeb and P. A. Bernstein, “Transactions for distributed actors in the cloud,” Tech. Rep.
MSR-TR-2016-1001, 2016.

T. Eldeeb, S. Burckhardt, R. Bond, A. Cidon, J. Yang, and P. A. Bernstein, “Cloud actor-
oriented database transactions in orleans,” Proc. VLDB Endow., vol. 17, no. 12, pp. 3720-
3730, Aug. 2024.

S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a DHT,” in usenix,
2004.

E. Soisalon-Soininen and T. Ylonen, “Partial strictness in two-phase locking,” in Proceed-
ings of the 5th International Conference on Database Theory, ser. ICDT *95, Berlin, Hei-
delberg: Springer-Verlag, 1995, 1394AS147, 1ISBN: 3540589074.

G. Graefe, M. Lillibridge, H. Kuno, J. Tucek, and A. Veitch, “Controlled lock violation,”
in Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’13, New York, New York, USA: Association for Computing Machin-
ery, 2013, pp. 85-96, ISBN: 9781450320375.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “Aries: A transaction re-
covery method supporting fine-granularity locking and partial rollbacks using write-ahead
logging,” ACM Trans. Database Syst., vol. 17, no. 1, 944A$162, Mar. 1992.

T. Eldeeb, X. Xie, P. A. Bernstein, A. Cidon, and J. Yang, “Chardonnay: Fast and general
datacenter transactions for On-Disk databases,” in 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), Boston, MA: USENIX Association, Jul.
2023, pp. 343-360, 1SBN: 978-1-939133-34-2.

G. Prasaad, A. Cheung, and D. Suciu, “Handling highly contended oltp workloads using
fast dynamic partitioning,” in Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data, ser. SIGMOD 20, Portland, OR, USA: Association for
Computing Machinery, 2020, 5274AS$542, ISBN: 9781450367356.

160

[161]

[162]

[163]

[164]

[165]

[166]

[167]

A. Pavlo et al., Benchbase: A benchmarking toolkit for database systems, https: //
github.com/cmu-db/benchbase, GitHub repository, 2023.

E. Soisalon-Soininen and T. Ylonen, “Partial strictness in two-phase locking,” in Proceed-
ings of the 5th International Conference on Database Theory, ser. ICDT *95, Berlin, Hei-
delberg: Springer-Verlag, 1995, 139aAS$147, 1SBN: 3540589074.

H. Guo, X. Zhou, and L. Cai, “Lock violation for fault-tolerant distributed database sys-
tem,” in 2021 IEEE 37th International Conference on Data Engineering (ICDE), 2021,
pp. 1416-1427.

P. K. Chrysanthis and K. Ramamritham, “Acta: A framework for specifying and reasoning
about transaction structure and behavior,” SIGMOD Rec., vol. 19, no. 2, 194€1ASZO3, 1990.

P. Krishna Reddy and M. Kitsuregawa, “Speculative locking protocols to improve per-
formance for distributed database systems,” IEEE Transactions on Knowledge and Data
Engineering, vol. 16, no. 2, pp. 154-169, 2004.

C. Diaconu et al., “Hekaton: Sql server’s memory-optimized oltp engine,” ser. SIGMOD
"13, New York, New York, USA: Association for Computing Machinery, 2013, 12434AS$1254,
ISBN: 9781450320375.

J. Lam, J. Helt, W. Lloyd, and H. Lu, “Accelerating skewed workloads with performance
multipliers in the TurboDB distributed database,” in 21st USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 24), Santa Clara, CA: USENIX Asso-
ciation, Apr. 2024, pp. 1213-1228, 1SBN: 978-1-939133-39-7.

161

https://github.com/cmu-db/benchbase
https://github.com/cmu-db/benchbase

	Acknowledgments
	Introduction
	DPack: Efficiency-Oriented Privacy Budget Scheduling
	Overview
	Introduction
	Background
	Threat Model
	DP Background
	Privacy Scheduling Background

	Efficiency-Oriented Privacy Scheduling
	Efficient Scheduling with Traditional DP
	Efficient Scheduling Under RDP Accounting
	DPack Algorithm
	Adapting to the Online Case

	Applicability
	Implementation
	Evaluation
	Methodology
	Offline Microbenchmark (Q1, Q2)
	Online Plausible Workload (Q3)
	Kubernetes Implementation Evaluation (Q4)

	Related Work
	Conclusions

	Turbo: Effective Caching for Differentially-Private Databases
	Overview
	Introduction
	Background
	Turbo Overview
	Design Goals
	Use Cases
	Turbo Architecture

	Detailed Design
	Notation
	Running Example
	PMW-Bypass
	Tree-Structured PMW-Bypass
	Histogram Warm-Start

	Prototype Implementations
	Evaluation
	Methodology
	Use Case (1): Non-partitioned Database
	Use Case (2): Partitioned Static Database
	Use Case (3): Partitioned Streaming Database
	Runtime and Memory Evaluation

	Discussion
	Related Work
	Conclusion

	Cookie Monster: Efficient On-device Budgeting for Differentially-Private Ad-Measurement Systems
	Overview
	Introduction
	Review of Ad-Measurement APIs
	Example Scenario
	Ad-Measurement Systems
	Improvement Opportunity

	Cookie Monster Overview
	Architecture
	Execution Example
	Algorithm
	Bias Implications of IDP

	Formal Modeling and Analysis
	Formal System Model
	IDP Formulation and Guarantees
	IDP Optimizations

	Chrome Prototype
	Evaluation
	Methodology
	Microbenchmark Evaluation (Q1)
	PATCG Evaluation (Q1, Q2)
	Criteo Evaluation (Q1, Q2)
	Bias Measurement (Q3)

	Related Work
	Conclusion

	Dances with Locks: An Adaptive Commit Protocol for Distributed Transactions
	Overview
	Introduction
	Background
	Dependency Tracking with Resolver
	Sangria
	Overview
	Coordinator Commit Protocol
	Participant Prepare Procedure
	Discussion
	Adaptive Decision Logic
	Correctness Guarantees

	Evaluation
	Methodology
	Workloads
	Contention vs. Resolver Capacity (Q1)
	Online Adaptation (Q2)
	Mixed Workloads (Q3)
	Resolver Performance (Q4)

	Related Work
	Future Work
	Conclusions

	Conclusion
	References

