
Packing Privacy Budget Efficiently

Pierre Tholoniat1, Kelly Kostopoulou1, Mosharaf Chowdhury2, Asaf Cidon1, Roxana Geambasu1, Mathias
Lécuyer3, and Junfeng Yang1

1Columbia University, 2University of Michigan, 3University of British Columbia

December 27, 2022

Abstract
Machine learning (ML) models can leak information about
users, and differential privacy (DP) provides a rigorous way to
bound that leakage under a given budget. This DP budget can
be regarded as a new type of compute resource in workloads
of multiple ML models training on user data. Once it is used,
the DP budget is forever consumed. Therefore, it is crucial to
allocate it most efficiently to train as many models as possible.
This paper presents the scheduler for privacy that optimizes
for efficiency. We formulate privacy scheduling as a new
type of multidimensional knapsack problem, called privacy
knapsack, which maximizes DP budget efficiency. We show
that privacy knapsack is NP-hard, hence practical algorithms
are necessarily approximate. We develop an approximation
algorithm for privacy knapsack, DPK, and evaluate it on mi-
crobenchmarks and on a new, synthetic private-ML work-
load we developed from the Alibaba ML cluster trace. We
show that DPK: (1) often approaches the efficiency-optimal
schedule, (2) consistently schedules more tasks compared to
a state-of-the-art privacy scheduling algorithm that focused
on fairness (1.3–1.7× in Alibaba, 1.0–2.6× in microbench-
marks), but (3) sacrifices some level of fairness for efficiency.
Therefore, using DPK, DP ML operators should be able to
train more models on the same amount of user data while
offering the same privacy guarantee to their users.

1 Introduction

Machine learning (ML) workloads are consuming an essen-
tial and scarce resource – user privacy – but they are not
always accounting for or bounding this consumption. A large
company may train thousands of models over user data per
week, continuously updating these models as it collects new
data. Some of the models may be released to mobile devices
or distributed globally to speed up prediction. Unfortunately,
there is increasing evidence that ML models can reveal spe-
cific entries from their original training sets [6,7,13,54], both
through parameters and predictions, thereby potentially leak-
ing user data to adversaries. Intuitively, the more one learns
from aggregate user data, the more one should expect to also
learn (and hence leak) about individual users whose data is
used. This intuition has been proven for simple statistics [10]

and appears to hold experimentally for ML models. Therefore,
user privacy can be viewed as a resource that is consumed by
tasks in an ML workload, and whose consumption should be
accounted for and bounded to limit data leakage risk.

Differential privacy (DP) [12] provides a rigorous way to
define the privacy resource, and to account for it across multi-
ple computations or tasks, be they ML model training tasks or
statistic calculations (§2). DP randomizes a computation over
a dataset (e.g. training an ML model or computing a statistic)
to bound the leakage of entries in the dataset through the
output of the computation. Each DP computation increases
this bound on data leakage, consuming some of the data’s
privacy budget, a pre-set quantity that should never be ex-
ceeded to maintain the privacy guarantee. In workloads with
a large number of tasks that continuously train models on a
private corpus or stream, the data’s privacy budget is a very
scarce resource that must be efficiently allocated to enable
the execution of as many tasks as possible.

Recent work [38, 40, 59] has explored how to expose
data privacy to tasks as a new computing resource (§2). Be-
cause the privacy resource behaves differently from tradi-
tional computing resources – such as CPU, GPU, RAM, etc.
– scheduling it requires new algorithms, or adaptations of
existing ones to the privacy resource. The state-of-the-art
algorithm for privacy scheduling, DPF [40], optimizes for
fairness, providing guarantees that are derived from tradi-
tional max-min fairness. Unfortunately, as is often the case
in scheduling [8, 22, 23, 28, 33, 50], fairness can come at the
cost of allocation efficiency. For privacy, we find that this
inefficiency is especially evident in workloads that exhibit
a high degree of heterogeneity either in the data segments
they request (e.g. a workload containing tasks that run on
data collected from different time ranges), or in the types of
tasks they contain (e.g. a workload mixing different types of
statistics and ML algorithms). In such cases, we show that a
scheduler that optimizes for efficiency rather than fairness can
schedule up to 2.6× more tasks for the same privacy budget!

In this paper, we explore the first practical efficiency-
oriented privacy schedulers, which aim to maximize the num-
ber of scheduled tasks, or the total utility of scheduled tasks
if tasks are assigned utility weights (§3). We first introduce

1

ar
X

iv
:2

21
2.

13
22

8v
1

 [
cs

.C
R

]
 2

6
D

ec
 2

02
2

a new formulation of the DP scheduling problem, which op-
timizes for efficiency, and show that it maps to the NP-hard
multidimensional knapsack problem, requiring practical ap-
proximations to solve in practice. We demonstrate that prior
work, which optimizes for fairness, can be seen as an in-
efficient heuristic to solve this problem, and how a better
heuristic for multidimensional knapsack yields more efficient
DP scheduling. We then show that instantiating the privacy
scheduling problem to Rényi DP (RDP) accounting, a state-of-
the-art, efficient DP accounting mechanism, introduces a new
dimension with unusual semantics to the scheduling problem.
To support this new dimension, we define a new knapsack
problem that we call the privacy knapsack, which we show is
also NP-hard. Finally, we propose a new RDP-aware heuristic
for the privacy knapsack, instantiate it into a new scheduling
algorithm called DPK, provide a formal analysis of its ap-
proximation properties, and discuss when one should expect
to see significant efficiency gains from it (§4).

We implement DPK in a Kubernetes-based orchestrator
for data privacy [40] and an easily-configurable simula-
tor (§5). Using both microbenchmarks and a new, synthetic,
DP-ML workload we developed from the Alibaba’s ML clus-
ter trace [58], we compare DPK to DPF, the optimal privacy
knapsack solver, and first-come-first-serve (FCFS) (§6). DPK
schedules significantly more tasks than DPF (1.3–1.7× in Al-
ibaba and 1.0–2.6× in microbenchmarks), and closely tracks
the optimal solution, at least up to a small number of blocks
and tasks where it is feasible for us to obtain the optimal
solution. DPK on Kubernetes can scale to thousands of tasks,
and incurs a relatively modest scheduler runtime overhead.
Still, by focusing on efficiency, DPK sacrifices some level of
fairness compared to DPF: in the Alibaba workload, DPF is
able to schedule 90% of tasks that request less or equal than
their privacy budget “fair-share”, while DPK schedules only
60% of such tasks. This is inevitable given the rather funda-
mental tradeoff between efficiency and fairness in scheduling.
Our work thus fills in an important gap on algorithms that
prioritize efficiency over fairness, as we believe will be desir-
able given the scarcity of this essential new resource in ML
systems, user privacy.

2 Background

2.1 Threat Model
We are concerned with the most commonly used threat

model in DP: the central model. We assume a trusted curator
that stores all sensitive data in a central location and trust
that they will not directly inspect or share it. We also trust
the tasks that are submitted by the users and expect those to
satisfy a particular (ε,δ)-DP guarantee. However, we do not
trust the recipients of results released by the system, or the
locations in which they are stored. Access to those results
may expose sensitive information about individuals, and we
impose DP guarantees across all the processes that gener-

ate them. Released results may be statistical aggregates, ML
model predictions, or entire ML models. Related work shows
that these can be leveraged to perform malicious acts. Mem-
bership inference attacks [3, 14, 30, 54] allow the adversary
to infer whether an individual is in the data used to generate
the output. Data reconstruction attacks [6, 10, 13] allow the
adversary to infer sensitive attributes about individuals that
exist in this data. We tackle both types of attack.

Our focus is not on singular models or statistics, released
once, but rather on workloads of many models or statistics,
trained or updated periodically over windows of data from
user streams. For example, a company may train an auto-
complete model daily or weekly to incorporate new data from
an email stream, distributing the updated models to mobile
devices for fast prediction. Moreover, the company may use
the same email stream to periodically train and disseminate
multiple types of models, for example for recommendations,
spam detection, and ad targeting. This creates ample opportu-
nities for an adversary to collect models and perform privacy
attacks to siphon personal data. To prevent such attacks, our
goal is to maintain a global (εG, δG)-DP guarantee over the
entire workload consisting of many tasks.
2.2 DP Background

Because our scheduling algorithms intimately leverage
properties of DP theory to achieve good efficiency, we in-
clude a detailed DP background. To begin with, DP is known
to address both membership inference and data reconstruction
attacks [6,13,32,54]. Intuitively, both attacks work by finding
data points (which can range from individual events to entire
users) that make the observed model more likely: if those
points were in the training set, the likelihood of the observed
model increases. DP prevents these attacks by ensuring that
no specific data point can drastically increase the likelihood
of the model produced by the training procedure.

DP randomizes a computation over a dataset (e.g., the train-
ing of an ML model) to bound a quantity called privacy loss,
defined as a measure of the change in the distribution over
the outputs of the randomized algorithm incurred when a sin-
gle data point is added to or removed from the input dataset.
Privacy loss is a formalization of what one might colloquially
call “leakage” through a model. Formally, given a randomized
algorithm, A : D → Y , for any datasets D,D ′ that differ in
one entry and for any output y ∈ Y :

PrivacyLoss(y,D,D ′) = log
(P(A(D) = y)

P(A(D ′) = y)

)
.

Satisfying pure ε-DP [12] and its relaxed (ε,δ)-DP ver-
sion [11] means bounding the privacy loss by some fixed,
parameterized value, ε > 0, called privacy budget, potentially
with high probability 1− δ, for δ ∈ [0,1). Specifically, it
means that for any y, D, D ′ as above, the following holds
with probability at least 1−δ when y∼ A(D) or y∼ A(D ′):

|PrivacyLoss(y,D,D ′)| ≤ ε.

There are multiple mechanisms to transform a (non-
randomized) computation – such as computing a statistic or

2

performing a gradient step – into a DP computation. At a high
level, if the computation has (potentially multidimensional)
real-valued output, one adds noise from specific distributions,
such as Gaussian or Laplace, to the computation’s output.
Through properties of these well-known distributions, one
can then compute an upper bound on the privacy loss.

These traditional DP definitions have the strength of being
relatively interpretable: for a small value of ε (e.g., ε ≤ 1),
ε-DP can be interpreted as a guarantee that an attacker who
inspects the output of an ε-DP computation will not learn any-
thing new with confidence about any entry in the training set
that they would not otherwise learn if the entry were not in the
training set [57]. Similarly, for small δ (e.g., δ< 1

n2 for dataset
size n), (ε,δ)-DP guarantee is roughly a high-probability ε-
DP guarantee. The advantage of (ε,δ)-DP is support for a
richer set of randomization mechanisms, such as adding noise
from a Gaussian distribution, which pure DP cannot, and
which often provide better privacy-utility tradeoffs. That is
why (ε,δ)-DP is the reference privacy definition for DP ML.
Basic DP Accounting. A key property of DP is composition,
the ability to compute the overall DP guarantee under multiple
DP tasks. The most basic composition property offers a simple
and convenient arithmetic: the composition of two (ε1,δ1)-DP
and (ε2,δ2)-DP tasks is (ε1 +ε2,δ1 +δ2)-DP. In practice, the
abstraction used for DP composition is a privacy accountant
[43], which keeps track of all DP tasks, composes their privacy
budget, and potentially prevents further data access when a
preset, global bound of the privacy loss is reached. A DP
accountant based on basic composition will sum the ε’s and
δ’s of all DP tasks running on the data, leading to the global
DP guarantee degrading linearly with the number of tasks m.
Rényi DP Accounting ((α,ε)-RDP). RDP [44] is a recent
DP definition that defines the privacy loss differently, sacri-
ficing interpretability for tighter analysis of randomization
mechanisms and how they compose with each other. It yields
even better privacy-utility tradeoffs, especially for DP ML,
and hence it has been adopted inside the privacy accountants
of most DP ML platforms [15, 19, 20]. Instead of defining
the privacy loss based on probability ratios as traditional DP
does, RDP defines it in terms of the Rényi divergence, a par-
ticular distance between the distributions over all possible
outcomes for A(D) and A(D ′). Rényi divergence has a pa-
rameter, α > 1, called order:

PrivacyLossα(D,D ′)=
1

α−1
log E

y∼A(D)

(P(A(D) = y)
P(A(D ′) = y)

)α

.

As before, (α,ε)-RDP requires that |PrivacyLossα(D,D ′)| ≤
ε for any datasets D,D ′ differing in one entry. Known noise
mechanisms for traditional DP, such as those adding Gaussian
or Laplace noise to the computation’s output, have known
RDP curves ensuring a bound ε(α) for any α value.

RDP is less interpretable than traditional DP due to the
complexity of Rényi divergence. However, one can always
translate from (ε,α)-RDP to (εDP,δ)-DP [44] for any appro-
priately ranged values of α, ε, and δ:

εDP = ε+
log(1/δ)

α−1
. (1)

RDP’s greatest advantage over traditional DP – and the rea-
son for its recent adoption by most major DP ML platforms
as well as for our special consideration of it in this paper – is
its support for both efficient and convenient composition. In
RDP, the composition of two (ε1,α)-RDP and (ε2,α)-RDP
mechanisms is (ε1 +ε2,α)-RDP, a similarly convenient arith-
metic as for basic composition in traditional DP. However,
whereas with traditional DP, composing m mechanisms de-
grades the global guarantee linearly with m, with RDP, the
global guarantee degrades with

√
m when applying composi-

tion followed by conversion to traditional DP through Eq. 1.
This means that RDP can allow composition of more DP
computations with the same ε guarantees; the advantage is
particularly significant with a large m.

Since popular DP ML algorithms, such as DP SGD, con-
sist of tens of thousands iterations of the same rudimentary
DP computation (computing one gradient step over a sample
batch), they require the most efficient composition accounting
method. This is why most DP ML platforms have adopted pri-
vacy accountants that internally operate on RDP to compose
across steps and then translate the cumulative RDP guarantee
into traditional DP (with Eq. 1) to provide an interpretable
privacy semantic externally. Similarly, since our goal is to
develop efficient scheduling algorithms – that pack as many
DP ML tasks as possible onto a fixed privacy budget – it
is impending upon us to consider RDP accounting in our
scheduling formulations.1 We do so in a similar way: inter-
nally, some of the algorithms we propose use RDP accounting
(albeit to compose across ML training tasks, not across gradi-
ent steps within a task) but externally we will always relate a
traditional DP guarantee. As it turns out, operating on RDP
internally creates interesting challenges for scheduling, about
which we discuss in §3.2.
2.3 Privacy Scheduling Background

The preceding DP accounting view of composition implies
that a global DP guarantee can be seen as a finite privacy bud-
get to be allocated to tasks running on the data. In practice,
many DP systems maintain separate privacy budgets for dif-
ferent subsets of the dataset. Indeed, a property of DP called
parallel composition [43] guarantees that, for two disjoint
subsets of the input domain D1 and D2, the result of an ε1-
DP computation on D1 and an ε2-DP computation on D2 is
max(ε1,ε2)-DP. This property is crucial for practical DP ap-
plications that handle many computations on non-overlapping
parts of the dataset, such as SQL databases [43, 59], analytics
frameworks [5, 63] or ML platforms for continuous train-
ing [38, 40].

A recent line of work [38, 40] has argued for the global
privacy budget to be managed as a new type of computing re-
source in workloads operating on user data: its use should be

1We considered, and discarded, advanced composition for traditional DP,
which is also efficient but involves untenable arithmetic [46].

3

tracked and carefully allocated to competing tasks. We adopt
the same focus on ML platforms for continuous training on
user data streams, such as Tensorflow-Extended (TFX), and
build on the same basic operational model [38] and key ab-
stractions and algorithms [40] for monitoring and allocating
privacy in DP versions of these platforms. The operational
model is as follows. Similar to TFX, the user data stream
is split into multiple non-overlapping blocks (called spans
in TFX [56]), for example by time, with new blocks being
added over time. Blocks can also correspond to partitions
given by SQL GROUP BY statements over public keys, such as
in Google’s DP SQL system [59] or in the DP library used for
the U.S. Census [5]. There are multiple tasks, dynamically
arriving over time, that request to compute (e.g., train ML
models) on subsets of the blocks, such as the most recent
N blocks. The company owning the data wants to enforce a
global traditional DP guarantee, (εG,δG)-DP, that cannot be
exceeded across these tasks. Each data block is associated
with a global privacy budget (fixed a priori), which is con-
sumed as DP tasks compute on that block until it is depleted.

Luo et al. [40] incorporated privacy blocks, i.e., data blocks
with privacy budget, as a new compute resource into Kuber-
netes, to allocate privacy budget from these blocks to tasks
that request them. To request privacy budget from a privacy
block, a task i sets a demand vector (di) of length m, equal to
the number of blocks in the system. The demand vector speci-
fies the privacy budget that task i requests for each individual
block in the system (with a zero demand for blocks that it is
not requesting). If task i is allocated, then its demand vector is
consumed from the blocks’ privacy budgets. When a block’s
privacy budget reaches zero, no more tasks can be allocated
for that block and the block is removed. This ensures that a
block of user data will not be used to extract so much infor-
mation that it risks leaking information about the users. In
this sense, each privacy block is a non-replenishable or finite
resource. It is therefore important to carefully allocate budget
from privacy blocks across tasks, so as to pack as many tasks
as possible onto the blocks available at any time. That’s the
goal of our efficiency-oriented privacy scheduling.

3 Efficiency-Oriented Privacy Scheduling

We introduce a new formulation of the DP scheduling prob-
lem, which optimizes for efficiency. We first develop an offline
version of this problem, in which the entire workload is as-
sumed to be fixed and known a priori, and study efficient
DP scheduling with basic DP accounting (§3.1). We show
that offline DP scheduling maps to the NP-hard multidimen-
sional knapsack problem, requiring practical approximations
to solve in practice. We show that DPF [40], a previous DP
scheduler that optimizes for fairness, can be seen as an inef-
ficient heuristic for this problem, and how a better heuristic
yields more efficient DP scheduling with multiple data blocks.
We then show that RDP accounting introduces a new dimen-

(a) Inefficient allocation with DPF (b) Efficient allocation

Fig. 1: Example of allocations with basic DP accounting. Task T1
requests privacy budget from 3 blocks, B1,B2,B3. Tasks T2,T3,T4
request slightly more privacy budget, but each one from one distinct
block: B1,B2,B3, respectively. In 1(a), DPF sorts these tasks based
on their dominant shares: T1 first (because its dominant share is
lower, even though it demands budget from all the blocks), then
T2,T3,T4 in arbitrary order. After T1 is scheduled, there is no more
budget for other tasks. Meanwhile, in 1(b) an efficient scheduler can
allocate 3 tasks.

sion with unusual semantics to the scheduling problem (§3.2).
To support this new dimension, we define a new knapsack
problem, called the privacy knapsack, which is also NP-hard.
We propose an RDP-aware heuristic for the privacy knapsack,
instantiate it a scheduling algorithm called DPK, and analyze
its performance (§3.3). Finally, we show how we adapt this
heuristic to the online case (§3.4).
3.1 Efficient Scheduling Under Basic DP Accounting

We define the global efficiency of a scheduling algorithm
as either the number of scheduled tasks or, more generally, the
sum of weights wi of scheduled tasks, for cases when different
tasks have different utilities (a.k.a. profits or weights) to the
organization. When the goal is to optimize global efficiency,
we can model privacy budget scheduling in a multi-block
system such as TFX as a multidimensional knapsack problem.

Consider a fixed number of n tasks (t1, . . . , tn) that need to
be scheduled over m blocks, each with c j remaining capacity.
Each task has a demand vector di j, which represents the de-
mand by task i for block j, and a weight wi if it is successfully
scheduled (when wi is equal across all tasks, the problem is
to maximize the number of scheduled tasks).ß We can formu-
late this problem as the standard multidimensional knapsack
problem [35], where xi are binary variables:

max
xi∈{0,1}

n

∑
i=1

wixi

subject to ∀ j ∈ [m] :
n

∑
i=1

di jxi ≤ c j.

W.l.o.g., we assume there is not enough budget to schedule
all tasks: ∀ j ∈ [m] : ∑

n
i=1 di j > c j. Otherwise, the knapsack

problem is trivial to solve. If some blocks have enough budget
but not others, we can set the blocks with enough budget aside,
solve the problem only on the blocks with contention, and
incorporate the remaining blocks at the end.
The Need for Heuristics. The multidimensional knapsack
problem is known to be NP-hard [35], so DP scheduling

4

cannot be solved exactly, even in the offline case. There ex-
ist some general-purpose polynomial approximations for this
problem, but they are exponential in the approximation param-
eter and become prohibitive for large numbers of dimensions
(for us, many blocks). In §6.2, we show that the Gurobi [27]
solver quickly becomes intractable with just 7 blocks.

The standard approach to practically solve knapsack prob-
lems is to develop specialized approximations for a specific
domain of the problem, typically using a greedy algorithm
of the following form [35]: (1) sort tasks according to a task
efficiency metric (denoted ei) and (2) allocate tasks in order,
starting from the highest-efficiency tasks, until the algorithm
cannot pack any new tasks. In such algorithms, the main chal-
lenge is coming up with good task efficiency metrics that
leverage domain characteristics to meaningfully approximate
the optimal solution while remaining practical.
Inefficiencies Under a Fair Scheduling Heuristic. Interest-
ingly, we can model DPF [40], the state-of-the-art privacy
scheduling algorithm, as a greedy heuristic for privacy knap-
sack, albeit one that offers no efficiency guarantee. DPF sched-
ules tasks with the smallest dominant share (max j

di j
c j

) first.
Folding in task weights, this becomes equivalent to a greedy
algorithm with an efficiency metric defined as: ei := wi

max j
di j
c j

.

Unfortunately, under this efficiency metric DPF can stray
arbitrarily far from the optimal even in simple cases. The
reason lies in the maxima over j, which is crucial to ensure
the fair distribution of DP budget, but causes DPF to ignore
multidimensionality in data blocks. Fig. 1 gives an example
using traditional DP and a workload of 4 tasks. DPF sorts
tasks by dominant share and schedules only one task. Mean-
while, a better efficiency metric would consider the “area” of
a task’s demand, thereby sorting tasks T2,T3 and T4 before T1,
resulting in 3 tasks getting scheduled.
Area-Based Metric for Efficient Scheduling Over Blocks.
We take inspiration from single-dimensional knapsacks, in
which the efficiency ei of task i is usually defined as the task’s
weight-to-demand ratio: ei := wi/di. A natural extension to
multiple blocks uses a known heuristic for multidimensional
knapsacks [49] to capture the entire demand of a task:

ei :=
wi

∑ j
di j
c j

, (2)

where di j
c j

is task i’s DP budget demand for block j, normalized
by the remaining capacity of block j. This normalization is
important to express the scarcity of a demanded resource.
Unlike the DPF fair scheduling metric, Eq. 2 considers the
entire “area” of a task’s demand to compute its efficiency,
addressing the inefficiency from Fig. 1. A task requesting a
large budget across blocks is not scheduled even if its demand
on any block (dominant share) is small.
3.2 Efficient Scheduling Under RDP Accounting

The above heuristic is satisfactory for traditional DP ac-
counting, but practitioners and state-of-the-art ML algorithms

 0.01

 0.1

 1

 10

 100

 4 16 64

N
o

rm
a

liz
e

d
 R

D
P

 e
p

s
ilo

n

RDP order (alpha)

Composition
Sampled Gaussian
Gaussian
Laplace

(a) RDP curves

“best alpha” for
Composition

(b) DP translation

Fig. 2: Example RDP curves and DP translation. (a) RDP curves
for Gaussian, subsampled Gaussian, and Laplace mechanisms, each
with std-dev σ = 2, plus their composition. (b) Translation to
(εDP,10−6)-DP. The “best” (i.e., tightest) alpha differs among mech-
anisms. For composition, best is α = 6, giving εDP = 5.5.

use the more efficient RDP accounting (§2). Recall that with
RDP, multiple bounds on the privacy loss can be computed,
for various RDP orders α (Eq. 2.2). This yields an RDP order
curve ε(α) for that computation. For instance, adding noise
from a Gaussian with standard deviation σ into a computation
results in ε(α) = α

2σ2 . Other mechanisms, such as subsam-
pled Gaussian (used in DP-SGD) or Laplace (used in simple
statistics), induce other RDP curves. These curves are highly
non-linear and their shapes differ from each other. This makes
it difficult to know analytically what the privacy loss func-
tion will look like when composing multiple computations
with heterogeneous RDP curves. For this reason, typically
the RDP ε bound is computed on a few discrete α values
({1.5,1.75,2,2.5,3,4,5,6,8,16,32,64} [44]), on which the
composition is performed. Importantly composition for each
α is still additive, a key element of RDP’s practicality.

Fig. 2(a) shows RDP curves for three example compu-
tations, each using a popular DP mechanism: the Gaussian
corresponds to a multidimensional statistic (a histogram); the
subsampled Gaussian corresponds to DP-SGD training; and
Laplace corresponds to a simple statistic (an average). Differ-
ent computations exhibit different RDP curves, with different
orderings of the Rényi divergence bound at different α’s. The
subsampled Gaussian is tighter at lower α values; the Laplace
is tighter for large α’s. The figure also shows the RDP curve
for the composition of the three computations.

Fig. 2(b) shows the translation of these four curves into
traditional DP (using Eq. 1). For each computation, any value
of α > 1 will translate into a different traditional ε. Some
traditional ε translations are very loose, others are tighter, but
they are all valid simultaneously. Because of this, we can
pick the α that gives us the best traditional ε guarantee and
disregard the rest as loose bounds. This best alpha differs from
computation to computation: in our example, for the Gaussian
it is α≈ 16; for the subsampled Gaussian α≈ 6; and for the
Laplace α ≥ 64. The best alpha for the composition of all
three computations is α≈ 6, yielding (ε = 5.5,δ = 10−6)-DP.
If we were to analyze and compose the three computations
directly in traditional DP, we would obtain a looser global
guarantee of (ε= 7.8,δ= 10−6)-DP. This gap grows fast with

5

the number of computations. Herein lies RDP’s power, but
also a significant challenge when trying to allocate its budget
across competing computations.

Notice that when translating from RDP to traditional DP
with Eq. 1, one chooses the most advantageous α for the fi-
nal traditional DP guarantee, ignoring all other RDP orders.
This new α dimension therefore has a different semantic than
the traditional multidimensional knapsack one. Indeed, the
traditional knapsack dimension semantic is that an allocation
has to be within budget along all dimensions. This is a good
fit for our block dimension, as we saw in §3.1. Instead, an
allocation is valid along the α dimension as long as the al-
location is within budget for at least one dimension. This
creates opportunities for efficient scheduling, as the allocator
can go over-budget for all but one α order. It also creates a
new challenge, as the α order that will yield the most efficient
allocation is unknown a priori and depends on the chosen
combination of tasks. Since the traditional multidimensional
knapsack does not encode this new semantic, we define a
new multidimensional knapsack problem for efficient RDP
scheduling.
The Privacy Knapsack Problem. To accommodate RDP,
we need to modify the standard multidimensional knapsack
problem to support alpha orders for each block and task de-
mand. We express the capacity as c jα (the available capacity
of block j on order α), each demand vector as di jα (the de-
mand of task i on block j’s order α), and require that the sum
of the demands will be smaller or equal to the capacity for
at least one of the alpha orders. Therefore, we formulate the
privacy knapsack as follows:

max
xi∈{0,1}

n

∑
i=1

wixi

subject to ∀ j ∈ [m],∃α ∈ A :
n

∑
i=1

di jαxi ≤ c jα.

We prove three properties of privacy knapsack (proofs in
Appendix §A):
Property 1. The decision problem for the privacy knapsack
problem is NP-hard.

Property 2. In the single-block case, there is a fully polyno-
mial time approximation scheme (FPTAS) for privacy knap-
sack. I.e., with wmax the highest possible global efficiency, for
any η > 0 we can find an allocation with global efficiency ŵ
such that wmax ≤ (1+η)ŵ, with a running time polynomial
in n and 1/η.

Property 3. For m ≥ 2 blocks, there is no FPTAS for the
privacy knapsack problem unless P=NP.

While Prop. 1 and 3 are disheartening (though perhaps
unsurprising), Prop. 2 gives a glimmer of hope that at least
for single-block instances, we can solve the problem tractably.
Indeed, as we shall see, this property is crucial for our solution.
Fair Scheduling With Multiple RDP Alpha Orders. Inter-
estingly, fair scheduling with DPF for RDP can once again be

(a) Inefficient allocation with DPF (b) Efficient allocation

Fig. 3: Example of allocations with RDP accounting. In Fig. 3(a),
DPF treats RDP orders like a regular resource and orders tasks by
dominant share, allocating only 2 tasks in this example. Meanwhile,
Fig. 3(b) leverages the fact that only one order per block has to
be below the capacity (here, α1 for block B1 and α2 for block B2).
Tasks T3 and T5 have a large dominant share of 1.5 but are efficient
because they request only 0.5 for B1’s best alpha, α1.

expressed as an ordering heuristic for the privacy knapsack, in
which efficiency is defined as ei := wi

max jα
di jα
c jα

. However, this

approach is even more inefficient than under traditional DP.
In addition to the previous multi-block inefficiency (§3.1),

this fair scheduling approach exhibits a new inefficiency under
RDP, regardless of the number of blocks it is invoked on (e.g.,
even if applied to non-block-based DP systems, such as DP
SQL databases). Fig. 3 gives an example using two blocks
and a workload of 6 tasks, each requesting only 1 block. In
Fig. 3(a), DPF sorts tasks by the highest demands across
all α’s and allocates only 2 tasks. A better efficiency metric
would sort tasks by demands at the α value that can pack
the most tasks (a.k.a., best alpha for composition), ultimately
scheduling 4 tasks in Fig. 3(b). Note that the best alpha is not
necessarily the same for each block.

We conclude that an efficiency metric that simply takes
the maximum of the dominant shares is neither efficient for
scheduling multiple privacy blocks, nor for scheduling pri-
vacy budget in systems that use RDP accounting. However,
a direct extension of our “area based” efficiency metric in
Eq. 2 does not appropriately handle RDP alpha orders either,
as it does not account for the specific semantic of the α order.
We next describe our new efficiency metric, that is optimized
for efficiently scheduling tasks across multiple blocks and
supports RDP.

3.3 DPK Algorithm
Intuitively, to support the “at least one” semantic of the α

order from RDP, we need an efficiency metric that makes it
less attractive to pack a task that consumes a lot of budget at
what will ultimately be the best alpha, defined as the RDP
order that packs the most tasks (or the most weight) while
remaining under budget. That best alpha is ultimately the
only one for which the demands of tasks matter and hence
should be the one used for computing an efficiency metric.
The challenge is that for workloads consisting of tasks with
heterogeneous RDP curves, the best alpha is not known a

6

Algorithm 1 DPK Offline Algorithm
global variables

tasks i, blocks j, RDP orders α capacities c jα
approximation factor η, demands di jα, weights wi

function COMPUTEBESTALPHA(block j)
for ∀α do

ˆwmax jα← SINGLEBLOCKKNAPSACK(cα,di jα,wi,
2
3 η)

return argmaxα
ˆwmax jα

function COMPUTEEFFICIENCY(task i, best alphas α̂max
j)

return wi/∑ j(di jα̂max
j

/c jα̂max
j

)

function CANRUN(task i)
return ∀ j,∃α : ∑

i
i′=1 di′ jα ≤ c jα

function SCHEDULE(tasks i)
for ∀ j do

α̂max
j ← COMPUTEBESTALPHA(c jα,di jα,wi)

sorted_tasks← tasks.sortBy(COMPUTEEFFICIENCY(α̂max
j))

for i in sorted_tasks do
if CANRUN(di jα) then

Run task i, consuming the demanded budget

priori. Our idea is to compute it for the given set of RDP
curves constituting the workload (recall that we are in the
offline case), and to focus a task’s efficiency metric on that
best alpha as the only relevant dimension.

Recall from Prop. 2 that in the single-block case,
we can solve privacy knapsack with polynomial-time η-
approximation for arbitrarily small η > 0. This means we
can solve a single-block knapsack problem separately for
each block j that determines the best alpha that will pack
the most tasks (or maximal weight) among tasks request-
ing block j, taking only their request for that block into ac-
count. We define the maximum utility for block j and order α

as wmax
jα := maxxi ∑

n
i:di jα>0 xiwi subject to ∑i xidi jα ≤ c jα. We

take ŵmax
jα a 2

3 η-approximation of wmax
jα (2

3 is justified by proof
below). Based on this, we define the efficiency of task i as:

ei :=
wi

∑ jα(
di jα
c jα

if (α == argmaxα′ ŵmax
jα′) else 0)

(3)

Alg. 1 shows DPK, our greedy approximation with the
efficiency metric in Eq. 3. This algorithm addresses both of
the problems we identified with DPF. Moreover, we show
that the manner in which DPK handles RDP is not just better
than DPF in particular, but rather has two important generally
desirable properties. First, DPK reduces to the traditional
multidimensional knapsack efficiency metric of Eq. 2 when
only one α exists, e.g. for traditional DP:
Property 4. If the dimension of α values is one (e.g., with tra-
ditional DP), DPK reduces to the traditional multidimensional
knapsack heuristic from Eq. 2.
Proof. With one dimension, α == argmaxα′ ŵmax

jα′ is always
true.

Second, DPK is a guaranteed approximation of the optimal
in the specific cases when such an approximation is possible,
the single-block case:
Property 5. In the single-block case, DPK is a (1

2 + η)-
approximation algorithm for privacy knapsack.

Proof. Call α̂ , argmaxα′ ŵmax
jα′ . By construction we have

wmax
jα̂ ≤ (1 + 2

3 η)ŵmax
jα̂ . In the single-block (index j) case,

Eq. 3 means that tasks are greedily allocated by decreasing
wi

di jα̂
, a well known 1/2-approximation to the one dimensional

knapsack problem [35]. Hence, wmax
jα̂ ≤ (1 + 2

3 η)ŵmax
jα̂ ≤

(1+ 2
3 η)(1+ 1

2)∑
n
i=1 xiwi = (1+ 1

2 +η)∑
n
i=1 xiwi.

Because of Prop. 3, a similar multi-block efficiency guar-
antee cannot be formulated (for DPK as well as any other
poly-time algorithm). However, §6 shows that in practice,
DPK performs close to the optimal solution of privacy knap-
sack in terms of global efficiency, yet it is a computationally
cheap alternative to that intractable optimal solution.
3.4 Adapting to the Online Case

In practice, new tasks and blocks arrive dynamically in
a system such as TFX, motivating the need for an online
scheduling algorithm. We adapt our offline algorithm to the
online case by scheduling a batch of tasks on the set of avail-
able blocks every T units of time. To prevent expensive tasks
from consuming all the budget prematurely, similar to DPF,
we schedule each batch on a fraction of the total budget ca-
pacity: at each scheduling step we unlock an additional 1/N
fraction of the block capacity. More precisely, at each schedul-
ing time t = kT , we execute Alg. 1 on the tasks and blocks
currently in the system, but we replace block j’s capacity by:

ct
jα =

min(d(t− t j)/Te,N)

N
ε jα− ∑

i′∈At

di′ jα,

where ε jα is the total capacity of block j (computed from Prop.
1), t j is the arrival time of block j, d(t− t j)/Te is the number
of scheduling steps the block has witnessed so far (including
the current step), and At is the set of tasks previously allocated.

As with the offline algorithm, at the time of scheduling
all the tasks are sorted by the scheduling algorithm. The
scheduler tries to schedule tasks one-by-one in order. Any
tasks that did not get scheduled remains in the system until
the next scheduling time, and any unused unlocked budget
remains available for future tasks. Users also specify a per-
task timeout after which the task is evicted.

T is a parameter of the system that controls how many
tasks get batched (and delayed) before getting scheduled. We
evaluate its effect empirically in Fig. 9, and show that all
algorithms we study are relatively insensitive to T .

4 Applicability

We now turn to two important considerations that arise when
using DPK to schedule ML tasks in a training platform for
continuous training on user data streams. We start by dis-
cussing the adaptivity in DP queries required by this use-case,
and how it is supported by our design (§4.1). We then discuss
the characteristics of workloads under which we expect DPK
to yield improvements (§4.2).

7

4.1 Privacy Guarantees under Adaptive Workloads
An important DP consideration when building a system

around DPK is that is that composition in the accounting
mechanism we use needs to support adaptively chosen privacy
budgets per task. Indeed in the online case, which is the main
use-case when scheduling ML workloads on continuous data
streams, both jobs submitted by developer and jobs scheduled
by DPK can depend on past results. This is important, as DP
composition requires special care when dealing with adaptive
privacy budgets per task [52]. Fortunately privacy filters, a DP
accounting mechanism enabling adaptive composition under
a preset upper-bound on the privacy loss, are known for both
basic accounting [52] and RDP accounting [16, 37].

To support a global (ε,δ)-DP guarantee under continu-
ous data streams, we use the data block composition intro-
duced by Sage [38, 41]: each data block is associated with
a privacy filter, initiated with ε,δ for basic accounting, or
ε(α) = ε− log(1/δ)

α−1 for RDP. The RDP initial value ensures
that translating back to traditional DP with Eq. 1 ensures
(ε,δ)-DP. A task is granted if, and only if, all filters grant the
request (all blocks have enough budget left). This ensures the
following property (proof in appendix):

Property 6. DPK enforces (ε,δ)-DP over adaptively chosen
computations and privacy demands εi(α).

Proof. We provide a proof sketch following the structure used
in [38] (Theorem 4.2) for basic composition. Each task has an
(adaptive) RDP requirement for all blocks, with ε(α) = 0 for
non-requested blocks. Each data block is associated with a
privacy filter (Algorithm 1 in Lécuyer et al. [37]). A task runs
if and only if all filters accept the task: applying Theorem 1
in Lécuyer et al. [37] ensures ε(α) = ε− log(1/δ)

α−1 -RDP holds
for each block. Applying Eq. 1 concludes the proof.

4.2 When to Expect Improvements from DPK
It is worth reflecting on the characteristics of workloads

under which DPK provides the most benefit compared to alter-
natives such as DPF. §3.1 gives examples of inefficient DPF
operation with multiple blocks and alpha orders. However,
DPF does not always behave inefficiently when invoked on
multiple blocks or with multiple alpha orders. For example,
if all the tasks in Fig. 1 uniformly demanded three blocks,
then DPF would make the “optimal” choice. The same would
happen if all the tasks in Fig. 3 had RDP curves that were all
ordered in the same way across alphas, so that the ordering of
highest demands is the same as the ordering of demands at
the best alpha order. In such cases, DPK’s “intelligence” – its
appropriate treatment of the multiple blocks and focus on the
best alpha – would not make a difference.

Instead, DPK should be expected to improve on DPF when
the workload exhibits heterogeneity in one or both of these
two dimensions: number of demanded blocks and best alphas.
Indeed, the example in Fig. 1 exhibits high heterogeneity in
demanded blocks, with Task 1 demanding three blocks while

all the others demanding just one block. Similarly, the exam-
ple in Fig. 3 exhibits heterogeneity in the best alpha for the
different curves. This leads us to expect the greatest benefit
from DPK for workloads with a high degree of heterogeneity
in the number of demanded blocks and best alpha values of
their RDP curves. §6.2 instills this intuition into concrete met-
rics that it uses to develop a microbenchmark that evaluates
DPK and its baselines under a wide range of more or less
heterogeneous workloads, confirming the effects discussed
here.

We believe that heterogeneity of demands in both dimen-
sions – number of blocks and best alphas – would be a re-
alistic characteristic of real-world DP ML workloads. For
example, a pipeline that computes some summary statistics
over a dataset might run daily on just the latest block, while a
large neural network may need to retrain on data from the past
several blocks. This would result in heterogeneity in number
of demanded blocks. Similarly, pipelines that compute simple
statistics would likely employ a Laplace mechanism, while a
neural network training would employ subsampled Gaussian.
This would inevitably result in heterogeneity in best alphas,
because, as shown in Fig. 2, different mechanisms exhibit
very different RDP curves.

To summarize, DPK addresses heterogeneity in two orthog-
onal dimensions: multiple blocks and RDP alpha orders. DPK
is therefore broadly applicable to: (1) systems that exhibit
both of these dimensions (as would DP ML workloads in
TFX-like systems, or static SQL databases with multiple par-
titions); (2) systems that operate on a single block (such as
non-partitioned SQL databases) but perform RDP accounting;
and (3) systems that operate on multiple blocks but perform
other types of DP accounting, including traditional DP. For
all these settings, DPK would provide a benefit when the
workload exhibits heterogeneity.

5 Implementation

We implement DPK in two artifacts that we will open-source.
The first is a Kubernetes-based implementation of DPK.
We extend PrivateKube’s extension to Kubernetes in multiple
ways. We add support for batched scheduling (i.e. schedule
tasks every T time units) and task weights. We implement
DPK, and add support for solving the single block knap-
sack using Gurobi with the Go goop interface [21]. The
Kubernetes-based implementation has 924 lines of Go.

The second artifact is a simulator that lets users easily
specify and evaluate scheduling algorithms for the offline and
online settings under different workloads. We use a discrete
event simulator [55] to efficiently support arbitrarily fine time
resolutions. Users use configuration files to define the work-
load and resource characteristics to parameterize scheduling
for both online and offline cases. For example, they can define
block and task arrival frequencies, the scheduling period and
the block unlocking rate. The simulator also supports plug-

8

Sec. Workload Setting Prototype Results
Q1 §6.2 microbenchmark offline simulator Fig. 4
Q2 §6.2 microbenchmark offline simulator Fig. 5
Q3 §6.3 Alibaba, Amazon online simulator Fig. 6-7
Q4 §6.4 Alibaba online Kubernetes Fig. 8

Tab. 1: Workload and methodology of each evaluation question.
ging different definitions of efficiency, and different block
selection patterns for tasks (policies). Currently, the simulator
supports two patterns: a random selection of blocks with-
out replacement, and a selection of most recent blocks. The
simulator has 6,718 lines of Python.

6 Evaluation

We seek to answer four evaluation questions:
Q1: On what types of workloads does DPK improve over

DPF, and how close is DPK to Optimal?
Q2: How do the algorithms scale with increasing load?
Q3: Does DPK present an efficiency improvement for plau-

sible workloads? How much does it trade fairness?
Q4: How does our implementation perform in a realistic

setting?
These questions are best answered with distinct workloads

and settings, summarized in Tab. 1. First, Q1 and Q2 are best
addressed in an offline setting with a simple, tunable work-
load. To this end, we develop a microbenchmark consisting
of multiple synthetic tasks with distinct RDP curves and a
knob that controls the heterogeneity in demanded blocks and
RDP curves (§6.2). Second, Q3 and Q4 require a more re-
alistic, online setting and realistic workloads. In absence of
a production trace of DP ML tasks, we develop a workload
generator, called Alibaba-DP, based on Alibaba’s 2022 ML
cluster trace [58]. We map the Alibaba trace to a DP ML
workload by mapping system metrics to privacy parameters
(§6.3). While we cannot claim Alibaba-DP is realistic, it is
the first objectively-derived DP task workload generator, and
we believe it is a more plausible workload than those previ-
ously used in related works. We plan to release it publicly.
Third, Q1-Q3 are algorithmic-level questions independent of
implementation and hence we evaluate them in the simulator.
However, Q4 requires an actual deployment on Kubernetes,
so we dedicate the last part of this section to an evaluation on
Kubernetes with the Alibaba-DP workload (§6.4).
6.1 Methodology
Baselines. The main baseline, common across all experi-
ments, is DPF. We consider two other baselines: Optimal,
which is the exact Gurobi-derived privacy knapsack solu-
tion for the offline setting, and FCFS (first-come-first-serve),
which schedules tasks in an online setting based on their or-
der of arrival. The former is relevant for offline experiments
of small scale (few tasks/blocks), since it is not tractable for
larger ones. The latter is relevant for online experiments only.
Metrics. Global efficiency: defined as either the number of
allocated tasks or the sum of weighted allocated tasks. Sched-

uler runtime: measures how fast (in seconds), computation-
ally, a scheduling algorithm is. Scheduling delay: measures
how long tasks are blocked in the waiting queue, for exam-
ple because of insufficient unlocked budget or because of the
batching period T ; it is measured in block inter-arrival peri-
ods (e.g., if blocks arrive daily, the unit is days). In real life,
the total waiting time for a task will be the scheduling delay
plus scheduler runtime; for our experiments, since the two
are in different units, we never combine them. We expect in
reality scheduler runtimes to be small compared to scheduling
delays, for all the evaluated algorithms except for Optimal.
Machine. We use a server with 2 Intel Xeon CPUs E5-2640
v3 @ 2.60GHz (16 cores) and 110GiB RAM.
6.2 Offline Microbenchmark (Q1, Q2)
Microbenchmark. We design the microbenchmark to expose
knobs that let us systematically explore a spectrum of work-
loads ranging from less to more heterogeneous in demanded
blocks and RDP curve characteristics. The microbenchmark
consists of 620 RDP curves corresponding to five realistic
DP mechanisms often incorporated in DP ML workloads:
{Laplace, Subsampled Laplace, Gaussian, Subsampled Gaus-
sian, composition of Laplace and Gaussian}. We sample and
parameterize these curves with the following methodology
meant to expose two heterogeneity knobs:

Knob σblocks: To exercise heterogeneity in requested blocks,
we sample the number of requested blocks from a discrete
Gaussian with mean µblocks and standard deviation σblocks.
The requested blocks are then chosen randomly from the
available blocks. Increasing σblocks increases heterogeneity in
demanded blocks.

Knob σα: To exercise heterogeneity in best alphas, we
first normalize the demands (for a block with initial budget
(ε,δ) = (10,10−7)) and enforce that there is at least one curve
with best alpha α for each α ∈ {3,4,5,6,8,16,32,64}. Sec-
ond, we group tasks with identical best alphas to form “buck-
ets”. For each new task, we pick a best alpha following a trun-
cated discrete Gaussian over the bucket’s indexes, centered
in the bucket corresponding to α = 5 with standard deviation
σα. Third, we sample one task uniformly at random from
that bucket. After dropping some outliers (e.g. curves with
εmin < 0.05), we rescale the curves to fit any desired value of
the average and the standard deviation of εmin for each best
alpha, by shifting the curves up or down. This scaling lets
us change the distribution in best alphas while controlling
for the average size of the workload (in a real workload, the
value of εmin might be correlated with best alpha and other
parameters). Increasing σα increases workload heterogeneity
in best alphas.

We explore each heterogeneity knob separately. First, we
vary σblocks while keeping σα = 0 (i.e. all the tasks have best
alpha equal to 5) and µblocks = 10. Second, we vary σα while
keeping σblocks = 0, µblocks = 1 (i.e. all the tasks request the
same single block). In both cases, we keep εmin constant for
all tasks. We set εmin = 0.1 for the σblocks experiment (to

9

 25

 50

 75

 100

 0 1 2 3

n
u

m
b

e
r

o
f

a
llo

c
a

te
d
 t

a
s
k
s

σblocks (stdev of num blocks)

Optimal
DPK
DPF

(a) Block heterogeneity

 50

 100

 150

 200

 0 2 4 6 8

n
u

m
b

e
r

o
f

a
llo

c
a

te
d
 t

a
s
k
s

σ
α
 (stdev of best alpha)

Optimal
DPK
DPF

(b) Best alpha heterogeneity

Fig. 4: (Q1) DPK under workloads with variable heterogeneity
using our microbenchmark. Shows the global efficiency of the
algorithms (y axes) in the offline setting, as heterogeneity increases
on the x axes in terms of: (a) variation in number of blocks requested
and (b) variation in best alphas for the tasks’ RDP curves. Q1 Answer:
DPK tracks Optimal closely and significantly outperforms DPF
on workloads with high heterogeneity: 0–161% improvement for
Fig. 4(a) and 0–67% for Fig. 4(b).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000

s
c
h

e
d

u
le

r
ru

n
ti
m

e
 (

s
)

number of submitted tasks

Optimal
DPK
DPF

(a) Scheduler runtime

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 1000 2000 3000 4000 5000

n
u

m
b

e
r

o
f

a
llo

c
a

te
d

 t
a

s
k
s

number of submitted tasks

Optimal
DPK
DPF

(b) Allocated tasks

Fig. 5: (Q2) Scalability under increasing load from the mi-
crobenchmark. (a) Number of allocated tasks and (b) runtime of the
scheduler, as function of offered load (x axes). Q2 Answer: Optimal
becomes intractable quickly while DPK and DPF remain practical
even at high load.

keep the number of tasks small enough to be tractable for
Optimal) and εmin = 0.005 for the σα experiment (to have a
large number of tasks with high diversity in ε(α)).
Q1: On what types of workloads does DPK improve over
DPF, and how close is DPK to Optimal? Fig. 4 compares
the schedulers’ global efficiency in the offline setting, as the
heterogeneity of the workload increases in the two preceding
dimensions: the number of requested blocks (Fig. 4(a)) and
the best alphas of the tasks’ RDP curves (Fig. 4(b)). Across
the entire spectrum of heterogeneity, DPK closely tracks the
optimal solution, staying within 23% of it. For workloads
with low heterogeneity (up to 0.5 stdev in blocks and 1 stdev
in best alphas), there is not much to optimize. DPF itself
therefore performs close to Optimal and hence DPK does
not provide significant improvement. As heterogeneity in
either dimension increases, DPK starts to outperform DPF,
presenting significant improvement in the number of allocated
tasks for over 3 stdev in blocks and 2 stdev in best alphas:
161% and 67% improvement, respectively.

As all three schedulers try to schedule as many tasks as
they can with a finite privacy budget, these 1.0–2.6× addi-
tional tasks that DPK is able to schedule are tasks that DPF
would never be able to schedule, because the requested blocks’
budget has been depleted for posterity.

Q2: How do the algorithms scale with increasing load?
Fig. 5(a) shows the runtime of our simulator on a single thread.
We use a single thread for a fair comparison, but some sched-
ulers can be parallelized (our Kubernetes implementation is
indeed parallelized). We use the microbenchmark with hetero-
geneity knobs σα = 4,σblocks = 10,µblocks = 1,εmin = 0.01
and 7 available blocks. Optimal’s line stops at x = 200 tasks
because after that its execution never finishes. DPK takes
slightly longer than DPF to run because it needs to solve
multiple single-block knapsacks. Fig. 5(b) shows scheduler
efficiency in number of allocated tasks as a function of the
number of tasks in the system. DPF performs the worst, un-
able to efficiently schedule tasks across multiple blocks and
varying alpha order demands. DPK matches Optimal (up to
Optimal’s 200 task limit) and schedules more tasks when it
has a larger pool of tasks to choose from, since it can pick the
most efficient tasks. Since the workload has a finite number
of different tasks, as we increase the load, both schedulers
reach a plateau where they allocate only one type of task.
6.3 Online Plausible Workload (Q3)

We now evaluate online scenarios where tasks and blocks
arrive dynamically, and budget is unlocked over time. The
simulator uses a virtual unit of time, where one block arrives
each time unit. Tasks always request the m most recent blocks.
For all the evaluated policies we run a batch scheduler on the
available unlocked budget, every T blocks.
The Alibaba-DP Workload. We create a macrobenchmark
based on Alibaba’s GPU cluster trace [58]. The trace includes
1.1 million tasks submitted by 1,300 users over 3 months,
and contains each task’s resource demands and the resource
allocation over time. We use these metrics as proxies for task
DP budget demands, which do not exist in this trace.

We use machine type (CPU/GPU) as a proxy for DP mech-
anism type. We assume CPU-based tasks correspond to mech-
anisms used for statistics, analytics, or lightweight ML (e.g.
XGBoost or decision trees [25, 39]), while GPU-based tasks
correspond to deep learning mechanisms (DP-SGD or DP-
FTRL [1, 34]). We map each CPU-based task to one of the
{Laplace, Gaussian, Subsampled Laplace} curves and each
GPU-based task to one of the {composition of Subsampled
Gaussians, composition of Gaussians} curves, at random. We
use memory usage as a proxy for privacy usage by setting
traditional DP ε as an affine transformation of memory usage
(in GB hours). We don’t claim that memory will be correlated
with privacy in a realistic DP workload, but that the privacy
budget might follow a similar distribution (e.g. a power law
with many tasks having small requests and a long tail of tasks
with large requests). We compute the number of blocks re-
quired by each task as an affine function of the bytes read
through the network. Unlike the privacy budget proxy, we ex-
pect this proxy to have at least some degree of realism when
data is stored remotely: tasks that don’t communicate much
over the network are probably not using large portions of the
dataset. Finally, all tasks request the most recent blocks that

10

0

5k

10k

15k

20k

25k

20k 40k 60k 80k

n
u

m
b

e
r

o
f

a
ll
o
c
a

te
d
 t

a
s
k
s

number of submitted tasks

DPK

DPF

FCFS

(a) Allocated tasks as function of
submitted tasks

0

5k

10k

15k

20k

25k

 30 60 90 120 150 180

n
u

m
b

e
r

o
f

a
ll
o
c
a

te
d
 t

a
s
k
s

number of available blocks

DPK

DPF

FCFS

(b) Allocated tasks as function of
number of available blocks

Fig. 6: (Q3) Efficiency evaluation on the online Alibaba-DP work-
load. Number of allocated tasks as a function of (a) offered load
for 90 blocks and (b) available blocks for 60k tasks. Q3 Answer:
Alibaba-DP exhibits sufficient heterogeneity for DPK to present a
significant improvement (1.3–1.7×) over DPF.

arrived in the system and are assigned a weight of 1. We trun-
cate the workload by sampling one month of the total trace
and cutting off tasks that request more than 100 blocks or
whose smallest normalized RDP ε is not in [0.001,1]. The re-
sulting workload, called Alibaba-DP, is an objectively derived
version of the Alibaba trace. We use it to evaluate DPK under
a more complex workload than our synthetic microbenchmark
or PrivateKube’s also synthetic workload.
Q3: Does DPK present an efficiency improvement for
plausible workloads? How much does it trade fairness?
Fig. 6(a) shows the number of allocated tasks as a function of
the number of submitted ones from the Alibaba-DP workload.
The results show that as the number of submitted tasks in-
creases, both DPF and DPK can allocate more tasks, because
they have a larger pool of low-demand submitted tasks to
choose from. This is not the case with FCFS, which does not
prioritize low-demand tasks. DPK allocates 22–43% more
tasks than DPF, since it packs the tasks more efficiently. Sim-
ilarly, Fig. 6(b) shows the number of allocated tasks as a
function of the number of available blocks. As expected, all al-
gorithms can schedule more tasks when they have more avail-
able budget. DPK consistently outperforms DPF, scheduling
30–71% more tasks. Across all the configurations evaluated
in Fig. 6(a) and 6(b), DPK outperforms DPF by 1.3–1.7×.
The results confirm that Alibaba-DP, a workload derived ob-
jectively from a real trace, exhibits sufficient heterogeneity
for DPK to show significant benefit.

The appendix (Fig. 9) includes an evaluation of the number
of allocated tasks as a function of T . We find that T has very
little impact on the algorithms’ performance, and can be set
to a low value to minimize scheduling delay.
Efficiency–Fairness Trade-off. While DPK schedules sig-
nificantly more tasks than DPF on the Alibaba workload,
this increased efficiency comes at the cost of fairness, when
we use DPF’s definition of fairness. To demonstrate this, we
run the Alibaba workload with 90 blocks and 60k tasks, and
set the DPF “fair share” of tasks to be 1

50 . This means that
DPF will always prioritize tasks that request 1

50 or less of the
epsilon-normalized global budget. In the Alibaba trace, us-

0

5k

10k

15k

 250 500 750 1000 1250 1500

n
u

m
b

e
r

o
f

a
llo

c
a

te
d
 t

a
s
k
s

mean tasks per block

DPK
DPF
FCFS

(a) Original workload

0

500k

1M

 250 500 750 1000 1250 1500

s
u

m
 o

f
w

e
ig

h
ts

 f
o

r
a

llo
c
a

te
d

mean tasks per block

DPK
DPF
FCFS

(b) Workload with task weights
Fig. 7: Evaluation on Amazon Reviews workload from [40]. (a)
This workload, which is synthetic and very simple, exhibits limited
heterogeneity, so there is no room for DPK to improve over DPF.
(b) Adding randomly selected weights to the tasks creates sufficient
heterogeneity for DPK to mark an improvement. Global efficiency
is measured as the sum of weights of allocated tasks (y axis).

ing this definition, 41% of tasks would qualify as demanding
less or equal budget than their fair share. With DPK, 60% of
the allocated tasks are fair-share tasks; with DPF 90% are.
However, DPK can allocate 45% more tasks than DPF. As
expected, this shows that optimizing for efficiency comes at
the expense of fairness. In the case of privacy scheduling,
however, due to the finite nature of the privacy budget, DPF’s
fairness guarantees are limited only to the first N fair share
tasks (in the experiment, N = 50); the guarantees do not hold
for later-arriving tasks. This makes the overall notion of fair-
ness as defined by DPF somewhat arbitrary and underscores
the merit of efficiency-oriented algorithms.
Another workload: Amazon Reviews [40]. We also evalu-
ate on the macrobenchmark workload from the PrivateKube
paper [40], which consists of several DP models trained on
the Amazon Reviews dataset [47]. Unlike our Alibaba-DP,
which is rooted in a real ML workload trace, this workload is
completely synthetic and very small, and as a result, its char-
acteristics may be very different from real workloads. Yet, for
completeness, we evaluate it here, too. The workload consists
two categories of tasks: 24 tasks to train neural networks with
a composition of subsampled Gaussians, and 18 tasks to com-
pute summary statistics with Laplace mechanisms. Unlike for
our Alibaba-DP workload, task arrival needs to be configured
for this workload; tasks arrive with a Poisson process and
request the latest blocks. The Amazon Reviews workload has
low heterogeneity both in terms of block and the best-alpha
variance. Although tasks request up to 50 blocks, 95% of the
tasks in this workload request 5 blocks or fewer, and 63% of
the tasks request only 1 block. Moreover, tasks have only 2
possible best alphas (4 or 5), with 81% of the tasks with a
best alpha of 5. Hence, per our Q1 results in §6.2, we expect
DPF to already perform well and leave no room for improve-
ment for DPK. Fig. 7(a) confirms this: all schedulers perform
largely the same on this workload.

Next, without modifying the privacy budget or the blocks
they request, we configure different weights for submitted
tasks, corresponding to different profits the company might
get if a task gets to run. We assume that large tasks (neural
networks) are more important than small tasks. Then, we pick

11

 0

 20

 40

 60

 80

 100

 2000 3000 4000

s
c
h

e
d
u

le
r

ru
n

ti
m

e
 (

s
)

number of submitted tasks

DPK
DPF

(a) Scheduler runtime

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4

fr
a

c
ti
o
n

 o
f
a

llo
c
a

te
d
 t

a
s
k
s

scheduling delay (virtual time)

DPK
DPF

(b) Scheduling delay CDF

Fig. 8: (Q4) Evaluation on Kubernetes with Alibaba-DP. (a)
Scheduler runtime as function of submitted tasks in offline experi-
ment (T = 25), and (b) CDF of scheduling delay (we exclude sched-
uler runtime) for allocated tasks in online experiment (T = 5). Q4 An-
swer: DPK has only a modestly higher runtime than DPF, because
system-related overheads dominate runtime. In an online setting (b),
scheduling delays are almost identical across schedulers.

Scheduler Number of allocated tasks
DPK 1269
DPF 1100

Tab. 2: Efficiency on Kubernetes prototype with Alibaba-DP.

an arbitrary grid of weights while still allowing some small
tasks to be more profitable than some large tasks. Weights are
chosen uniformly at random from {10,50,100,500} for large
tasks and {1,5,10,50} for small tasks. This change implicitly
scales the number of requested blocks and increases hetero-
geneity. In terms of global efficiency, a task with weight k
demanding m blocks is roughly similar to a task with weight 1
demanding m/k blocks. Instead of having most tasks request
1 block, tasks now demand a higher-variance weighted num-
ber of blocks (the variation coefficient is 1.9 instead of 1.3).
Fig. 7(b) shows the global efficiency, measured as the sum
of weights of allocated tasks, as a function of the number of
submitted tasks. DPK now outperforms DPF by 9–50%.
6.4 Kubernetes Implementation Evaluation (Q4)
Q4: How does our implementation perform in a realistic
setting? We evaluate the Alibaba-DP workload on our Ku-
bernetes system. Scheduler runtime: We first estimate the
scheduler’s overhead by emulating an offline scenario, where
all the tasks and blocks are available. To do so, we use a large
T = 25. For this experiment, we generate a total of 4,190
tasks by sampling 2 days of the Alibaba cluster trace. The
experiment shows the runtime as a function of the number
of submitted tasks. It uses 10 offline and 20 online blocks.
Fig. 8(a) shows the total time spent in the scheduling pro-
cedure, which includes Kubernetes-related overheads (e.g.
inter-process communication and synchronization). As noted
in §5(a), DPK has a higher overhead since it solves knapsack
subproblems. DPK has a higher runtime overhead than DPF
since it has to recompute the efficiency of each task when
the global state changes after a scheduling cycle, while DPF
computes the dominant share of each task only once. Never-
theless, the overhead is modest, because: (a) the Kubernetes
overheads dominate, and (b) the DPK (and DPF) algorithms
are parallelized. In addition, since DP tasks are often long-

running (e.g. distributed training of deep neural networks),
the scheduling delay of DPK in many cases is insignificant
compared to the total task completion time.

Scheduling delays and efficiency: We run an experiment
to measure the scheduling delays (Fig. 8(b)) and efficiency
(Table 2) in an online scenario on Kubernetes. We use the
same workload and number of blocks as in Fig. 8(a), with
T = 5. As before, DPK is more efficient than DPF. Scheduling
delay, measured in virtual time, excluding scheduler runtime,
shows no significant difference between the two policies.

7 Related Work

We have already covered the details of the most closely related
works: DPF and related systems for privacy scheduling [38,
40] (background in §2.3, efficiency limitations in §3.1 and
§3.2, and experimental evaluation in §6). To summarize, we
adopt their threat and system models, but instead of focusing
on fairness, we focus on efficiency because we believe that the
biggest pressure in globally-DP ML systems will ultimately
be how to fit as many models as possible under a meaningful
privacy guarantee. We discuss other related works next.
Bin packing for data-intensive tasks. Multidimensional
knapsack and bin packing are classic NP-hard problems [2,
36, 60]. In recent years, several heuristics for these problems
have been proposed to increase resource utilization in big
data and ML clusters [22–24, 26]. Some of these heuristics
assign a weight to each dimension and reduce to a scalar
problem with a dot product [35, 49]. We show that the Rényi
formulation of differential privacy generates a new variation
of the multidimensional knapsack problem, making standard
approximations and heuristics unsuitable.
Scheduling trade-offs. Fairness and performance is a clas-
sic tradeoff in scheduling even in single-resource scenarios.
Shortest-remaining-time-first (SRTF) is optimal for minimiz-
ing the average completion time, but it can be unfair to long-
running tasks and cause starvation. Recent works have shown
a similar fairness and efficiency tradeoff in the multi-resource
setting [23]. Although max-min fairness can provide both
fairness and efficiency for a single resource, its extension
to multi-resource fairness [17] can have arbitrarily low effi-
ciency in the worst case [8]. In this paper, we highlight the
fairness-efficiency tradeoff when allocating privacy blocks
among multiple tasks with RDP.
Differential privacy. The literature on DP algorithms is ex-
tensive, including theory for most popular ML algorithms (e.g.
SGD [1, 62], federated learning [42]) and statistics (e.g. con-
tingency tables [4], histograms [61]), and their open source
implementations [15, 18, 19, 31, 48]. These lower-level algo-
rithms run as tasks in our workloads. Some algorithms focus
on workloads [29], including on a data streams [9], but they
remain limited to linear queries. Some DP systems also ex-
ist, but most do not handle ML workloads, instead providing
DP SQL-like [43, 51, 59] and MapReduce interfaces [53],

12

or support for summary statistics [45]. Sage [38] and Pri-
vateKube [40], previously discussed, handle ML workloads.

8 Conclusions

This paper for the first time explores how data privacy should
be scheduled efficiently as a computing resource. It formulates
the scheduling problem as a new type of multidimensional
knapsack optimization, and proposes and evaluates an approx-
imate algorithm, DPK, that is able to schedule significantly
more tasks than the state-of-the-art. By taking the first step of
building an efficient scheduler for DP, we believe this work
builds a foundation for tackling several important open chal-
lenges for managing access to DP in real-world settings, such
as supporting tasks with different utility functions, investigat-
ing job-level scheduling, and better scheduling of traditional
computing resources alongside privacy blocks.

References

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang. Deep learning with differential pri-
vacy. In Proc. of the ACM Conference on Computer and
Communications Security (CCS), 2016.

[2] Y. Azar, I. R. Cohen, S. Kamara, and B. Shepherd. Tight
bounds for online vector bin packing. In Proceedings of the
forty-fifth annual ACM symposium on Theory of Computing,
pages 961–970, 2013.

[3] M. Backes, P. Berrang, M. Humbert, and P. Manoharan. Mem-
bership privacy in microRNA-based studies. In Proc. of the
ACM Conference on Computer and Communications Security
(CCS), 2016.

[4] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and
K. Talwar. Privacy, accuracy, and consistency too: a holistic
solution to contingency table release. 2007.

[5] S. Berghel, P. Bohannon, D. Desfontaines, C. Estes, S. Haney,
L. Hartman, M. Hay, A. Machanavajjhala, T. Magerlein,
G. Miklau, A. Pai, W. Sexton, and R. Shrestha. Tumult Analyt-
ics: a robust, easy-to-use, scalable, and expressive framework
for differential privacy. arXiv, Dec. 2022.

[6] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song. The
secret sharer: Evaluating and testing unintended memorization
in neural networks. In N. Heninger and P. Traynor, editors,
28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019, pages 267–284.
USENIX Association, 2019.

[7] N. Carlini, F. Tramèr, E. Wallace, M. Jagielski, A. Herbert-
Voss, K. Lee, A. Roberts, T. B. Brown, D. Song, Ú. Erlingsson,
A. Oprea, and C. Raffel. Extracting training data from large
language models. In M. Bailey and R. Greenstadt, editors, 30th
USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021, pages 2633–2650. USENIX Association, 2021.

[8] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. HUG: Multi-
resource fairness for correlated and elastic demands. In 13th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16), pages 407–424, Santa Clara, CA, Mar.
2016. USENIX Association.

[9] R. Cummings, S. Krehbiel, K. A. Lai, and U. Tantipongpipat.
Differential privacy for growing databases. 2018.

[10] I. Dinur and K. Nissim. Revealing information while pre-
serving privacy. In Proc. of the International Conference on
Principles of Database Systems (PODS), 2003.

[11] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our data, ourselves: Privacy via distributed noise
generation. In Proc. of the Annual International Conference
on the Theory and Applications of Cryptographic Techniques
(Eurocrypt), 2006.

[12] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In Proc. of the
Theory of Cryptography Conference (TCC), 2006.

[13] C. Dwork, A. Smith, T. Steinke, and J. Ullman. Exposed! A
survey of attacks on private data. Annual Review of Statistics
and Its Application, 2017.

[14] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Ro-
bust traceability from trace amounts. In Proc. of the IEEE Sym-
posium on Foundations of Computer Science (FOCS), 2015.

[15] Facebook. Opacus. https://opacus.ai/. Accessed: 2020-
11-10.

[16] V. Feldman and T. Zrnic. Individual privacy accounting via a
renyi filter. In Thirty-Fifth Conference on Neural Information
Processing Systems, 2021.

[17] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica. Dominant resource fairness: Fair allocation
of multiple resource types. In D. G. Andersen and S. Rat-
nasamy, editors, Proceedings of the 8th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2011,
Boston, MA, USA, March 30 - April 1, 2011. USENIX Associ-
ation, 2011.

[18] Google. Differential Privacy. https://github.com/
google/differential-privacy/. Accessed: 2020-11-10.

[19] Google. TensorFlow Privacy. https://github.com/
tensorflow/privacy. Accessed: 2020-11-10.

[20] Google Differential Privacy. https://github.com/google/
differential-privacy/tree/main/python/dp_accounting,
2022.

[21] Goop generalized mixed integer optimization in Go. Goop
homepage. https://github.com/mit-drl/goop/, 2021.

[22] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella. Multi-resource packing for cluster schedulers. In
Proceedings of the 2014 ACM Conference on SIGCOMM, SIG-
COMM ’14, page 455–466, New York, NY, USA, 2014. Asso-
ciation for Computing Machinery.

[23] R. Grandl, M. Chowdhury, A. Akella, and G. Anantha-
narayanan. Altruistic scheduling in multi-resource clusters. In
12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 65–80, Savannah, GA, Nov.
2016. USENIX Association.

[24] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni.
Graphene: Packing and dependency-aware scheduling for data-
parallel clusters. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation,
OSDI’16, page 81–97, USA, 2016. USENIX Association.

[25] N. Grislain and J. Gonzalvez. Dp-xgboost: Private machine
learning at scale. CoRR, abs/2110.12770, 2021.

[26] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian,
H. H. Liu, and C. Guo. Tiresias: A GPU cluster manager for
distributed deep learning. In USENIX NSDI, pages 485–500,
2019.

13

https://opacus.ai/
https://github.com/google/differential-privacy/
https://github.com/google/differential-privacy/
https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy
https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/mit-drl/goop/

[27] Gurobi Optimization. Gurobi Optimization homepage. www.
gurobi.com/, 2021.

[28] A. Gutman and N. Nisan. Fair allocation without trade. In Pro-
ceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems - Volume 2, AAMAS ’12, page
719–728, Richland, SC, 2012. International Foundation for
Autonomous Agents and Multiagent Systems.

[29] M. Hardt and G. N. Rothblum. A multiplicative weights mech-
anism for privacy-preserving data analysis. In Symposium on
Foundations of Computer Science, 2010.

[30] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,
J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and
D. W. Craig. Resolving individuals contributing trace amounts
of DNA to highly complex mixtures using high-density SNP
genotyping microarrays. PLoS Genetics, 2008.

[31] IBM. Diffprivlib. https://github.com/IBM/
differential-privacy-library. Accessed: 2020-12-7.

[32] B. Jayaraman and D. Evans. Evaluating differentially private
machine learning in practice. In Proc. of USENIX Security,
2019.

[33] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multiresource al-
location: Fairness–efficiency tradeoffs in a unifying framework.
IEEE/ACM Transactions on Networking, 21(6):1785–1798,
2013.

[34] P. Kairouz, B. McMahan, S. Song, O. Thakkar, A. Thakurta,
and Z. Xu. Practical and private (deep) learning without sam-
pling or shuffling. In M. Meila and T. Zhang, editors, Proceed-
ings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages 5213–5225.
PMLR, 2021.

[35] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems.
Springer, 2004.

[36] L. T. Kou and G. Markowsky. Multidimensional bin pack-
ing algorithms. IBM Journal of Research and development,
21(5):443–448, 1977.

[37] M. Lécuyer. Practical Privacy Filters and Odometers with
Rényi Differential Privacy and Applications to Differentially
Private Deep Learning. In arXiv, v2, 2021.

[38] M. Lécuyer, R. Spahn, K. Vodrahalli, R. Geambasu, and D. Hsu.
Privacy Accounting and Quality Control in the Sage Differen-
tially Private ML Platform. In Proc. of the ACM Symposium
on Operating Systems Principles (SOSP), 2019.

[39] Q. Li, Z. Wu, Z. Wen, and B. He. Privacy-preserving gradient
boosting decision trees. In The Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 784–791. AAAI Press, 2020.

[40] T. Luo, M. Pan, P. Tholoniat, A. Cidon, R. Geambasu, and
M. Lécuyer. Privacy budget scheduling. In 15th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 21), pages 55–74. USENIX Association, July 2021.

[41] T. Luo, M. Pan, P. Tholoniat, A. Cidon, R. Geambasu, and
M. Lécuyer. Privacy Resource Scheduling (extended version).
https://github.com/columbia/privatekube, 2021.

[42] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learn-
ing differentially private recurrent language models. 2018.

[43] F. D. McSherry. Privacy integrated queries: An extensible
platform for privacy-preserving data analysis. 2009.

[44] I. Mironov. Rényi Differential Privacy. In Computer Security
Foundations Symposium (CSF), 2017.

[45] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. GUPT:
Privacy preserving data analysis made easy. In Proc. of the
2012 ACM SIGMOD International Conference on Manage-
ment of Data, 2012.

[46] J. Murtagh and S. Vadhan. The Complexity of Computing
the Optimal Composition of Differential Privacy. In Theory
of Cryptography, pages 157–175. Springer, Berlin, Germany,
Dec. 2015.

[47] J. Ni, J. Li, and J. McAuley. Justifying recommendations using
distantly-labeled reviews and fine-grained aspects. In Proceed-
ings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP).,
pages 188–197, Hong Kong, China, Nov. 2019. Association
for Computational Linguistics. https://nijianmo.github.
io/amazon/index.html.

[48] OpenDP. https://smartnoise.org/. Accessed: 2020-11-
10.

[49] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder. Heuristics
for vector bin packing. Technical report, 2011.

[50] D. C. Parkes, A. D. Procaccia, and N. Shah. Beyond dominant
resource fairness: Extensions, limitations, and indivisibilities.
ACM Transactions on Economics and Computation (TEAC),
3(1):1–22, 2015.

[51] D. Proserpio, S. Goldberg, and F. McSherry. Calibrating data to
sensitivity in private data analysis: a platform for differentially-
private analysis of weighted datasets. Proc. of the International
Conference on Very Large Data Bases (VLDB), 2014.

[52] R. M. Rogers, A. Roth, J. Ullman, and S. Vadhan. Privacy
odometers and filters: Pay-as-you-go composition. 2016.

[53] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel.
Airavat: Security and privacy for MapReduce. In Proc. of
the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2010.

[54] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Member-
ship inference attacks against machine learning models. In
Proc. of IEEE Symposium on Security and Privacy (S&P),
2017.

[55] Simpy. Discrete event simulation for Python. https://simpy.
readthedocs.io/en/latest/index.html, 2020.

[56] TensorFlow Extended Guide. https://www.tensorflow.org/
tfx/guide/examplegen, 2022.

[57] S. Vadhan. The complexity of differential privacy. In Tutorials
on the Foundations of Cryptography. 2017.

[58] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li,
L. Zhang, W. Lin, and Y. Ding. MLaaS in the wild: Workload
analysis and scheduling in Large-Scale heterogeneous GPU
clusters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 945–960, Renton,
WA, Apr. 2022. USENIX Association.

[59] R. J. Wilson, C. Y. Zhang, W. Lam, D. Desfontaines,
D. Simmons-Marengo, and B. Gipson. Differentially private
sql with bounded user contribution. Proceedings on Privacy
Enhancing Technologies, 2020(2):230–250, 2020.

14

www.gurobi.com/
www.gurobi.com/
https://github.com/IBM/differential-privacy-library
https://github.com/IBM/differential-privacy-library
https://github.com/columbia/privatekube
https://nijianmo.github.io/amazon/index.html
https://nijianmo.github.io/amazon/index.html
https://smartnoise.org/
https://simpy.readthedocs.io/en/latest/index.html
https://simpy.readthedocs.io/en/latest/index.html
https://www.tensorflow.org/tfx/guide/examplegen
https://www.tensorflow.org/tfx/guide/examplegen

[60] G. J. Woeginger. There is no asymptotic PTAS for two-
dimensional vector packing. Information Processing Letters,
64(6):293–297, 1997.

[61] J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett.
Differentially private histogram publication. 2012.

[62] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex. Differentially
private model publishing for deep learning. In Proc. of IEEE
Symposium on Security and Privacy (S&P), 2019.

[63] D. Zhang, R. McKenna, I. Kotsogiannis, M. Hay,
A. Machanavajjhala, and G. Miklau. Ektelo: A frame-
work for defining differentially-private computations. In
Proceedings of the 2018 International Conference on Manage-
ment of Data, SIGMOD ’18, page 115–130, New York, NY,
USA, 2018. Association for Computing Machinery.

15

A Formal Proofs

Property 1. The decision problem for the privacy knapsack
problem is NP-hard.

Proof. Consider the decision problem corresponding to pri-
vacy knapsack: we are given an instance (demands, weights
and capacities), and given a sum of weights t ∈ R we have to
decide whether t is achievable by an allocation. We assume
the number of RDP orders |A| is fixed.

We can build a polynomial time reduction from the knap-
sack problem (KP) to the privacy knapsack problem (PK).

Consider an instance (d,w,c) of KP with demands d =
(d1, . . . ,dn) and weights w = (w1, . . . ,wn). We define an in-
stance f (d′,w′,c′) of PK with 1 block (j = 1) and n tasks such
that for each task i ∈ [n] and α ∈ A: d′i jα = di (the demands
are identical for all the α orders), c′jα = c (idem), and w′i = wi.

Thanks to this mapping, we have KP ≤p PK (i.e. if we can
solve PK, then we can solve KP with polynomial overhead),
because f is poly-time computable and (d,w,c) ∈ KP ⇐⇒
f (d′,w′,c′) ∈ RK. Indeed,

• If we have a KP allocation with sum of allocated weights
t, we can reuse the exact same allocation in f (d′,w′,c′).
The privacy knapsack capacity constraint will be satisfied
for α = 1 (for example).

• On the other hand, given a PK allocation f (d′,w′,c′) that
achieves total weight t > 0, we can build an allocation
in KP that achieves the same weight by selecting any α.

We know that KP is NP-hard, thus PK is NP-hard.

Property 2. In the single-block case, there is a fully poly-
nomial time approximation scheme (FPTAS) for the privacy
knapsack problem.

Proof. First, we know that the 1-dimensional Knapsack Prob-
lem (KP) is in FPTAS. For example, for 1 > ε > 0 and n ∈ N,
prior work [35] gives an (1− ε)-approximation algorithm K
for KP with runtime O(n3/ε) on instances of size n. Con-
sider a single block j = 1, n tasks and |A| RDP orders. We
can approximate the maximum profit for PK by running |A|
instances of K :

1. For order α, compute the (approximate) solution ŵmax
α

for maxx ∑i wixi subject to ∑i di jαxi ≤ c jα using K .

0

4k

8k

12k

16k

20k

24k

28k

32k

 1 10 100

n
u

m
b

e
r

o
f

a
llo

c
a

te
d
 t

a
s
k
s

T (virtual time)

DPK
DPF
FCFS

(a) Allocated tasks

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100s
c
h

e
d
u

lin
g
 d

e
la

y
 (

v
ir
tu

a
l
ti
m

e
)

T (virtual time)

DPK
DPF
FCFS

(b) Scheduling delay

Fig. 9: Impact of batching parameter T on global efficiency (a)
and scheduling delay (b). (a) Number of allocated tasks, and (b)
scheduling delay (in virtual time), both as a function of the batch-
ing parameter T (in virtual time). In terms of allocated tasks, all
schedulers are relatively insensitive to the batching parameter.

2. Then, output the maximum profit ŵmax := maxα∈A ŵmax
α .

Since A is fixed, this algorithm also runs in O(n3/ε) time,
and it is an (1− ε)-approximation algorithm for PK. Indeed,
there exists an α ∈ A such that wmax

α ≥ wmax where wmax :=
maxx ∑i wixi subject to ∃α′ ∈ A,∑i di jα′xi ≤ c jα′ . Finally, the
output satisfies ŵmax ≥ ŵmax

α ≥ (1− ε)wmax
α ≥ (1− ε)wmax.

Property 3. For m ≥ 2 blocks, there is no FPTAS for the
privacy knapsack problem unless P=NP.

Proof. We know that there is no FPTAS for the multidimen-
sional knapsack problem (d-KP) when d ≥ 2, unless P=NP
[35]. We can reuse the reduction from Prop. 2 to solve d-KP
from PK with m = d blocks with polynomial overhead.
B Additional Experiments

Fig. 9 shows the number of allocated tasks as a function of
T . With a high T , the online setting converges to the offline
setting. DPK and DPF perform more or less the same as a
function of T , while FCFS performs worse. This is because
with a high T , more budget will be unlocked to schedule large
tasks that arrived early, which would otherwise not get sched-
uled if their budget was not yet unlocked. DPK consistently
outperforms DPF by 28–52% in this experiment. Therefore,
we can conclude that T can be safely set to a relatively low
value (to minimize scheduling delay).

1

	1 Introduction
	2 Background
	2.1 Threat Model
	2.2 DP Background
	2.3 Privacy Scheduling Background

	3 Efficiency-Oriented Privacy Scheduling
	3.1 Efficient Scheduling Under Basic DP Accounting
	3.2 Efficient Scheduling Under RDP Accounting
	3.3 DPK Algorithm
	3.4 Adapting to the Online Case

	4 Applicability
	4.1 Privacy Guarantees under Adaptive Workloads
	4.2 When to Expect Improvements from DPK

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Offline Microbenchmark (Q1, Q2)
	6.3 Online Plausible Workload (Q3)
	6.4 Kubernetes Implementation Evaluation (Q4)

	7 Related Work
	8 Conclusions
	A Formal Proofs
	B Additional Experiments

